office-gobmx/extensions/source/ole/unoconversionutilities.hxx
Julien Nabet b09b5f8f7c Prefer cppu::UnoType<T>::get() to ::getCppuType((T*)0) part19
Change-Id: Iab50c52a132c90389992ef68c2d31df95a193ab9
2014-05-22 23:21:18 +02:00

2416 lines
94 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#ifndef INCLUDED_EXTENSIONS_SOURCE_OLE_UNOCONVERSIONUTILITIES_HXX
#define INCLUDED_EXTENSIONS_SOURCE_OLE_UNOCONVERSIONUTILITIES_HXX
#include "boost/scoped_array.hpp"
#include "com/sun/star/script/XInvocationAdapterFactory.hpp"
#include "com/sun/star/script/XInvocationAdapterFactory2.hpp"
#include "com/sun/star/script/XTypeConverter.hpp"
#include "com/sun/star/script/FailReason.hpp"
#include "com/sun/star/bridge/oleautomation/Date.hpp"
#include "com/sun/star/bridge/oleautomation/Currency.hpp"
#include "com/sun/star/bridge/oleautomation/SCode.hpp"
#include "com/sun/star/bridge/oleautomation/Decimal.hpp"
#include "typelib/typedescription.hxx"
#include "ole2uno.hxx"
#include "unotypewrapper.hxx"
#include <boost/unordered_map.hpp>
// for some reason DECIMAL_NEG (wtypes.h) which contains BYTE is not resolved.
typedef unsigned char BYTE;
// classes for wrapping uno objects
#define INTERFACE_OLE_WRAPPER_IMPL 1
#define UNO_OBJECT_WRAPPER_REMOTE_OPT 2
#define INVOCATION_SERVICE reinterpret_cast<const sal_Unicode*>(L"com.sun.star.script.Invocation")
// classes for wrapping ole objects
#define IUNKNOWN_WRAPPER_IMPL 1
#define INTERFACE_ADAPTER_FACTORY reinterpret_cast<const sal_Unicode*>(L"com.sun.star.script.InvocationAdapterFactory")
// COM or JScript objects implementing UNO interfaces have to implement this property
#define SUPPORTED_INTERFACES_PROP L"_implementedInterfaces"
// Second property without leading underscore for use in VB
#define SUPPORTED_INTERFACES_PROP2 L"Bridge_ImplementedInterfaces"
using namespace com::sun::star::script;
using namespace com::sun::star::beans;
using namespace com::sun::star::uno;
#ifdef __MINGW32__
using namespace com::sun::star::bridge;
using namespace com::sun::star::bridge::ModelDependent;
#endif
using namespace com::sun::star::bridge::oleautomation;
using namespace boost;
namespace ole_adapter
{
extern boost::unordered_map<sal_uInt32, sal_uInt32> AdapterToWrapperMap;
extern boost::unordered_map<sal_uInt32, sal_uInt32> WrapperToAdapterMap;
typedef boost::unordered_map<sal_uInt32, sal_uInt32>::iterator IT_Wrap;
typedef boost::unordered_map<sal_uInt32, sal_uInt32>::iterator CIT_Wrap;
//Maps IUnknown pointers to a weak reference of the respective wrapper class (e.g.
// IUnknownWrapperImpl. It is the responsibility of the wrapper to remove the entry when
// it is being destroyed.
// Used to ensure that an Automation object is always mapped to the same UNO objects.
extern boost::unordered_map<sal_uInt32, WeakReference<XInterface> > ComPtrToWrapperMap;
typedef boost::unordered_map<sal_uInt32, WeakReference<XInterface> >::iterator IT_Com;
typedef boost::unordered_map<sal_uInt32, WeakReference<XInterface> >::const_iterator CIT_Com;
// Maps XInterface pointers to a weak reference of its wrapper class (i.e.
// InterfaceOleWrapper_Impl). It is the responsibility of the wrapper to remove the entry when
// it is being destroyed. It is used to ensure the identity of objects. That is, an UNO interface
// is mapped to IDispatch which is kept alive in the COM environment. If the same
// UNO interface is mapped again to COM then the IDispach of the first mapped instance
// must be returned.
extern boost::unordered_map<sal_uInt32, WeakReference<XInterface> > UnoObjToWrapperMap;
typedef boost::unordered_map<sal_uInt32, WeakReference<XInterface> >::iterator IT_Uno;
typedef boost::unordered_map<sal_uInt32, WeakReference<XInterface> >::const_iterator CIT_Uno;
#ifdef __MINGW32__
inline void reduceRange( Any& any);
#endif
// createUnoObjectWrapper gets a wrapper instance by calling createUnoWrapperInstance
// and initializes it via XInitialization. The wrapper object is required to implement
// XBridgeSupplier so that it can convert itself to IDispatch.
// class T: Deriving class ( must implement XInterface )
/** All methods are allowed to throw at least a BridgeRuntimeError.
*/
template< class >
class UnoConversionUtilities
{
public:
UnoConversionUtilities( const Reference<XMultiServiceFactory> & smgr):
m_nUnoWrapperClass( INTERFACE_OLE_WRAPPER_IMPL),
m_nComWrapperClass( IUNKNOWN_WRAPPER_IMPL),
m_smgr( smgr)
{}
UnoConversionUtilities( const Reference<XMultiServiceFactory> & xFactory, sal_uInt8 unoWrapperClass, sal_uInt8 comWrapperClass )
: m_smgr( xFactory), m_nComWrapperClass( comWrapperClass), m_nUnoWrapperClass( unoWrapperClass)
{}
virtual ~UnoConversionUtilities() {}
/** converts only into oleautomation types, that is there is no VT_I1, VT_UI2, VT_UI4
a sal_Unicode character is converted into a BSTR.
@exception com.sun.star.lang.IllegalArgumentException
If the any was inappropriate for conversion.
@exception com.sun.star.script.CannotConvertException
The any contains a type class for which no conversion is provided.
*/
void anyToVariant(VARIANT* pVariant, const Any& rAny);
void anyToVariant(VARIANT* pVariant, const Any& rAny, VARTYPE type);
/** @exception com.sun.star.lang.IllegalArgumentException
If rSeq does not contain a sequence then the exception is thrown.
*/
SAFEARRAY* createUnoSequenceWrapper(const Any& rSeq);
/** @exception com.sun.star.lang.IllegalArgumentException
If rSeq does not contain a sequence or elemtype has no proper value
then the exception is thrown.
*/
SAFEARRAY* createUnoSequenceWrapper(const Any& rSeq, VARTYPE elemtype);
/**
@exception com.sun.star.lang.IllegalArgumentException
If rObj does not contain a struct or interface
*/
void createUnoObjectWrapper(const Any & rObj, VARIANT * pVar);
/** @exception CannotConvertException
Thrown if the VARIANT contains a type that cannot be coerced in the expected Any.
ArgumentIndex is 0.
@IllegalArgumentException
Thrown if the VARIANT is inappropriate for conversion. ArgumentPosition is -1,
*/
void variantToAny(const VARIANT* pVariant, Any& rAny, sal_Bool bReduceValueRange = sal_True);
/** This method converts variants arguments in calls from COM -> UNO. Only then
the expected UNO type is known.
@exception CannotConvertException
Thrown if the VARIANT contains a type that cannot be coerced in the expected Any.
ArgumentIndex is 0.
@IllegalArgumentException
Thrown if the VARIANT is inappropriate for conversion. ArgumentPosition is -1,
*/
void variantToAny( const VARIANTARG* pArg, Any& rAny, const Type& ptype, sal_Bool bReduceValueRange = sal_True);
/**
@exception IllegalArgumentException
-if pVar does not contain VT_UNKNOWN or VT_DISPATCH or
pVar is used for a particular UNO type which is not supported by pVar
*/
Any createOleObjectWrapper(VARIANT* pVar, const Type& aType= Type());
/*
Return true means var contained a ValueObject, and it was successfully converted.
The result is in any. It an error occurred a BridgeRuntimeError will be thrown.
*/
bool convertValueObject( const VARIANTARG *var, Any& any);
void dispatchExObject2Sequence( const VARIANTARG* pvar, Any& anySeq, const Type& type);
Sequence<Any> createOleArrayWrapperOfDim(SAFEARRAY* pArray, unsigned int dimCount, unsigned int actDim, long* index,
VARTYPE type, const Type& unotype);
Sequence<Any> createOleArrayWrapper(SAFEARRAY* pArray, VARTYPE type, const Type& unotype= Type());
VARTYPE mapTypeClassToVartype( TypeClass type);
Reference< XSingleServiceFactory > getInvocationFactory(const Any& anyObject);
virtual Reference< XInterface > createUnoWrapperInstance()=0;
virtual Reference< XInterface > createComWrapperInstance()=0;
static sal_Bool isJScriptArray(const VARIANT* pvar);
Sequence<Type> getImplementedInterfaces(IUnknown* pUnk);
protected:
Reference<XInterface> createAdapter(const Sequence<Type>& types, const Reference<XInterface>& receiver);
// helper function for Sequence conversion
void getElementCountAndTypeOfSequence( const Any& rSeq, sal_Int32 dim, Sequence< sal_Int32 >& seqElementCounts, TypeDescription& typeDesc);
// helper function for Sequence conversion
sal_Bool incrementMultidimensionalIndex(sal_Int32 dimensions, const sal_Int32 * parDimensionLength,
sal_Int32 * parMultidimensionalIndex);
// helper function for Sequence conversion
size_t getOleElementSize( VARTYPE type);
Type getElementTypeOfSequence( const Type& seqType);
//Provides a typeconverter
Reference<XTypeConverter> getTypeConverter();
// This member determines what class is used to convert a UNO object
// or struct to a COM object. It is passed along to the o2u_anyToVariant
// function in the createBridge function implementation
sal_uInt8 m_nUnoWrapperClass;
sal_uInt8 m_nComWrapperClass;
// The servicemanager is either a local smgr or remote when the service
// com.sun.star.bridge.OleBridgeSupplierVar1 is used. This service can be
// created by createInstanceWithArguments where one can supply a service
// manager that is to be used.
// Local service manager as supplied by the loader when the creator function
// of the service is being called.
Reference<XMultiServiceFactory> m_smgr;
// An explicitly supplied service manager when the service
// com.sun.star.bridge.OleBridgeSupplierVar1 is used. That can be a remote
// manager.
Reference<XMultiServiceFactory> m_smgrRemote;
Reference<XSingleServiceFactory> m_xInvocationFactoryLocal;
Reference<XSingleServiceFactory> m_xInvocationFactoryRemote;
private:
// Holds the type converter which is used for sequence conversion etc.
// Use the getTypeConverter function to obtain the interface.
Reference<XTypeConverter> m_typeConverter;
};
// ask the object for XBridgeSupplier2 and on success bridges
// the uno object to IUnknown or IDispatch.
// return true the UNO object supports
template < class T >
bool convertSelfToCom( T& unoInterface, VARIANT * pVar)
{
bool ret = false;
Reference< XInterface > xInt( unoInterface, UNO_QUERY);
if( xInt.is())
{
Reference< XBridgeSupplier2 > xSupplier( xInt, UNO_QUERY);
if( xSupplier.is())
{
sal_Int8 arId[16];
rtl_getGlobalProcessId( (sal_uInt8*)arId);
Sequence<sal_Int8> seqId( arId, 16);
Any anySource;
anySource <<= xInt;
Any anyDisp= xSupplier->createBridge( anySource, seqId, UNO, OLE);
if( anyDisp.getValueTypeClass() == TypeClass_UNSIGNED_LONG)
{
VARIANT* pvariant= *(VARIANT**)anyDisp.getValue();
HRESULT hr;
if (FAILED(hr = VariantCopy(pVar, pvariant)))
throw BridgeRuntimeError(
"[automation bridge] convertSelfToCom\n"
"VariantCopy failed! Error: " +
OUString::number(hr));
VariantClear( pvariant);
CoTaskMemFree( pvariant);
ret = true;
}
}
}
return ret;
}
// Gets the invocation factory depending on the Type in the Any.
// The factory can be created by a local or remote multi service factory.
// In case there is a remote multi service factory available there are
// some services or types for which the local factory is used. The exceptions
// are: all structs.
// Param anyObject - contains the object ( interface, struct) for what we need an invocation object.
template<class T>
Reference< XSingleServiceFactory > UnoConversionUtilities<T>::getInvocationFactory(const Any& anyObject)
{
Reference< XSingleServiceFactory > retVal;
MutexGuard guard( getBridgeMutex());
if( anyObject.getValueTypeClass() != TypeClass_STRUCT &&
m_smgrRemote.is() )
{
if( ! m_xInvocationFactoryRemote.is() )
m_xInvocationFactoryRemote= Reference<XSingleServiceFactory>(
m_smgrRemote->createInstance( INVOCATION_SERVICE), UNO_QUERY);
retVal= m_xInvocationFactoryRemote;
}
else
{
if( ! m_xInvocationFactoryLocal.is() )
m_xInvocationFactoryLocal= Reference<XSingleServiceFactory>(
m_smgr->createInstance(INVOCATION_SERVICE ), UNO_QUERY);
retVal= m_xInvocationFactoryLocal;
}
return retVal;
}
template<class T>
void UnoConversionUtilities<T>::variantToAny( const VARIANTARG* pArg, Any& rAny, const Type& ptype, sal_Bool bReduceValueRange /* = sal_True */)
{
try
{
HRESULT hr;
bool bFail = false;
bool bCannotConvert = false;
CComVariant var;
// There is no need to support indirect values, since they're not supported by UNO
if( FAILED(hr= VariantCopyInd( &var, const_cast<VARIANTARG*>(pArg)))) // remove VT_BYREF
throw BridgeRuntimeError(
"[automation bridge] UnoConversionUtilities<T>::variantToAny \n"
"VariantCopyInd failed for reason : " + OUString::number(hr));
bool bHandled = convertValueObject( & var, rAny);
if( bHandled)
OSL_ENSURE( rAny.getValueType() == ptype, "type in Value Object must match the type parameter");
if( ! bHandled)
{
// convert into a variant type that is the equivalent to the type
// the sequence expects. Thus variantToAny produces the correct type
// E.g. An Array object contains VT_I4 and the sequence expects shorts
// than the vartype must be changed. The reason is, you can't specify the
// type in JavaScript and the script engine determines the type beeing used.
switch( ptype.getTypeClass())
{
case TypeClass_CHAR: // could be: new Array( 12, 'w', "w")
if( var.vt == VT_BSTR)
{
if(SUCCEEDED( hr= VariantChangeType( &var, &var, 0, VT_BSTR)))
rAny.setValue( (void*)V_BSTR( &var), ptype);
else if (hr == DISP_E_TYPEMISMATCH)
bCannotConvert = true;
else
bFail = true;
}
else
{
if(SUCCEEDED(hr = VariantChangeType( & var, &var, 0, VT_I2)))
rAny.setValue((void*) & var.iVal, ptype);
else if (hr == DISP_E_TYPEMISMATCH)
bCannotConvert = true;
else
bFail = true;
}
break;
case TypeClass_INTERFACE: // could also be an IUnknown
case TypeClass_STRUCT:
{
rAny = createOleObjectWrapper( & var, ptype);
break;
}
case TypeClass_ENUM:
if(SUCCEEDED(hr = VariantChangeType( & var, &var, 0, VT_I4)))
rAny.setValue((void*) & var.lVal, ptype);
else if (hr == DISP_E_TYPEMISMATCH)
bCannotConvert = true;
else
bFail = true;
break;
case TypeClass_SEQUENCE:
// There are different ways of receiving a sequence:
// 1: JScript, VARTYPE: VT_DISPATCH
// 2. VBScript simple arraysVT_VARIANT|VT_BYREF the referenced VARIANT contains
// a VT_ARRAY| <type>
// 3. VBSrcript multi dimensional arrays: VT_ARRAY|VT_BYREF
if( pArg->vt == VT_DISPATCH)
{
dispatchExObject2Sequence( pArg, rAny, ptype);
}
else
{
if ((var.vt & VT_ARRAY) != 0)
{
VARTYPE oleType = ::sal::static_int_cast< VARTYPE, int >( var.vt ^ VT_ARRAY );
Sequence<Any> unoSeq = createOleArrayWrapper( var.parray, oleType, ptype);
Reference<XTypeConverter> conv = getTypeConverter();
if (conv.is())
{
try
{
Any anySeq = makeAny(unoSeq);
Any convAny = conv->convertTo(anySeq, ptype);
rAny = convAny;
}
catch (const IllegalArgumentException& e)
{
throw BridgeRuntimeError(
"[automation bridge]com.sun.star.lang.IllegalArgumentException "
"in UnoConversionUtilities<T>::variantToAny! Message: " +
e.Message);
}
catch (const CannotConvertException& e)
{
throw BridgeRuntimeError(
"[automation bridge]com.sun.star.script.CannotConvertException "
"in UnoConversionUtilities<T>::variantToAny! Message: " +
e.Message);
}
}
}
}
break;
case TypeClass_VOID:
rAny.setValue(NULL,Type());
break;
case TypeClass_ANY: // Any
// There could be a JScript Array that needs special handling
// If an Any is expected and this Any must contain a Sequence
// then we cannot figure out what element type is required.
// Therefore we convert to Sequence< Any >
if( pArg->vt == VT_DISPATCH && isJScriptArray( pArg))
{
dispatchExObject2Sequence( pArg, rAny,
getCppuType((Sequence<Any>*) 0));
}
else if (pArg->vt == VT_DECIMAL)
{
//Decimal maps to hyper in calls from COM -> UNO
// It does not matter if we create a sal_uInt64 or sal_Int64,
// because the UNO object is called through invocation which
//will do a type conversion if necessary
if (var.decVal.sign == 0)
{
// positive value
variantToAny( & var, rAny, cppu::UnoType<sal_uInt64>::get(),
bReduceValueRange);
}
else
{
//negative value
variantToAny( & var, rAny, cppu::UnoType<sal_Int64>::get(),
bReduceValueRange);
}
}
else
{
variantToAny( & var, rAny);
}
break;
case TypeClass_BOOLEAN: // VARIANT could be VARIANT_BOOL or other
if(SUCCEEDED(hr = VariantChangeType( & var, &var, 0, VT_BOOL)))
variantToAny( & var, rAny);
else if (hr == DISP_E_TYPEMISMATCH)
bCannotConvert = true;
else
bFail = true;
break;
case TypeClass_STRING: // UString
if(SUCCEEDED(hr = VariantChangeType( & var, &var, 0, VT_BSTR)))
variantToAny( & var, rAny);
else if (hr == DISP_E_TYPEMISMATCH)
bCannotConvert = true;
else
bFail = true;
break;
case TypeClass_FLOAT: // float
if(SUCCEEDED(hr = VariantChangeType( & var, &var, 0, VT_R4)))
variantToAny( & var, rAny);
else if (hr == DISP_E_TYPEMISMATCH)
bCannotConvert = true;
else
bFail = true;
break;
case TypeClass_DOUBLE: // double
if(SUCCEEDED(hr = VariantChangeType( & var, &var, 0, VT_R8)))
variantToAny(& var, rAny);
else if (hr == DISP_E_TYPEMISMATCH)
bCannotConvert = true;
else
bFail = true;
break;
case TypeClass_BYTE: // BYTE
if(SUCCEEDED(hr = VariantChangeType( & var, &var, 0, VT_I1)))
variantToAny( & var, rAny);
else if (hr == DISP_E_TYPEMISMATCH)
bCannotConvert = true;
else
bFail = true;
break;
case TypeClass_SHORT: // INT16
if(SUCCEEDED(hr = VariantChangeType( & var, &var, 0, VT_I2)))
variantToAny( & var, rAny);
else if (hr == DISP_E_TYPEMISMATCH)
bCannotConvert = true;
else
bFail = true;
break;
case TypeClass_LONG:
if(SUCCEEDED(hr = VariantChangeType(& var, &var, 0, VT_I4)))
variantToAny( & var, rAny, bReduceValueRange);
else if (hr == DISP_E_TYPEMISMATCH)
bCannotConvert = true;
else
bFail = true;
break;
case TypeClass_HYPER:
if(SUCCEEDED(hr = VariantChangeType(& var, &var, 0, VT_DECIMAL)))
{
if (var.decVal.Lo64 > SAL_CONST_UINT64(0x8000000000000000)
|| var.decVal.Hi32 > 0
|| var.decVal.scale > 0)
{
bFail = true;
break;
}
sal_Int64 value = var.decVal.Lo64;
if (var.decVal.sign == DECIMAL_NEG)
value |= SAL_CONST_UINT64(0x8000000000000000);
rAny <<= value;
}
else if (hr == DISP_E_TYPEMISMATCH)
bCannotConvert = true;
else
bFail = true;
break;
case TypeClass_UNSIGNED_SHORT: // UINT16
if(SUCCEEDED(hr = VariantChangeType( & var, &var, 0, VT_UI2)))
variantToAny( & var, rAny);
else if (hr == DISP_E_TYPEMISMATCH)
bCannotConvert = true;
else
bFail = true;
break;
case TypeClass_UNSIGNED_LONG:
if(SUCCEEDED(hr = VariantChangeType( & var, &var, 0, VT_UI4)))
variantToAny( & var, rAny, bReduceValueRange);
else if (hr == DISP_E_TYPEMISMATCH)
bCannotConvert = true;
else
bFail = true;
break;
case TypeClass_UNSIGNED_HYPER:
if(SUCCEEDED(hr = VariantChangeType(& var, &var, 0, VT_DECIMAL)))
{
if (var.decVal.Hi32 > 0 || var.decVal.scale > 0)
{
bFail = true;
break;
}
rAny <<= var.decVal.Lo64;
}
else if (hr == DISP_E_TYPEMISMATCH)
bCannotConvert = true;
else
bFail = true;
break;
case TypeClass_TYPE:
if(SUCCEEDED(hr = VariantChangeType(& var, &var, 0, VT_UNKNOWN)))
variantToAny( & var, rAny);
else if (hr == DISP_E_TYPEMISMATCH)
bCannotConvert = true;
else
bFail = true;
break;
default:
bCannotConvert = true;
break;
}
}
if (bCannotConvert)
throw CannotConvertException(
"[automation bridge]UnoConversionUtilities<T>::variantToAny \n"
"Cannot convert the value of vartype :\"" +
OUString::number((sal_Int32) var.vt) +
"\" to the expected UNO type of type class: " +
OUString::number((sal_Int32) ptype.getTypeClass()),
0, TypeClass_UNKNOWN, FailReason::TYPE_NOT_SUPPORTED,0);
if (bFail)
throw IllegalArgumentException(
"[automation bridge]UnoConversionUtilities<T>:variantToAny\n"
"The provided VARIANT of type\" " + OUString::number((sal_Int32) var.vt) +
"\" is unappropriate for conversion!", Reference<XInterface>(), -1);
}
catch (const CannotConvertException &)
{
throw;
}
catch (const IllegalArgumentException &)
{
throw;
}
catch (const BridgeRuntimeError &)
{
throw;
}
catch (const Exception & e)
{
throw BridgeRuntimeError("[automation bridge] unexpected exception in "
"UnoConversionUtilities<T>::variantToAny ! Message : \n" +
e.Message);
}
catch(...)
{
throw BridgeRuntimeError(
"[automation bridge] unexpected exception in "
"UnoConversionUtilities<T>::variantToAny !");
}
}
// The function only converts Sequences to SAFEARRAYS with elements of the type
// specified by the parameter type. Everything else is forwarded to
// anyToVariant(VARIANT* pVariant, const Any& rAny)
// Param type must not be VT_BYREF
template<class T>
void UnoConversionUtilities<T>::anyToVariant(VARIANT* pVariant, const Any& rAny, VARTYPE type)
{
try
{
HRESULT hr= S_OK;
OSL_ASSERT( (type & VT_BYREF) == 0);
if (type & VT_ARRAY)
{
type ^= VT_ARRAY;
SAFEARRAY* ar= createUnoSequenceWrapper( rAny, type);
if( ar)
{
VariantClear( pVariant);
pVariant->vt= ::sal::static_int_cast< VARTYPE, int >( VT_ARRAY | type );
pVariant->byref= ar;
}
}
else if(type == VT_VARIANT)
{
anyToVariant(pVariant, rAny);
}
else
{
CComVariant var;
anyToVariant( &var, rAny);
if(FAILED(hr = VariantChangeType(&var, &var, 0, type)))
{
if (hr == DISP_E_TYPEMISMATCH)
throw CannotConvertException(
"[automation bridge]UnoConversionUtilities<T>::anyToVariant \n"
"Cannot convert the value of type :\"" +
rAny.getValueTypeName() +
"\" to the expected Automation type of VARTYPE: " +
OUString::number((sal_Int32)type),
0, TypeClass_UNKNOWN, FailReason::TYPE_NOT_SUPPORTED,0);
throw BridgeRuntimeError(
"[automation bridge]UnoConversionUtilities<T>::anyToVariant \n"
"Conversion of any with " +
rAny.getValueType().getTypeName() +
" to VARIANT with type: " + OUString::number((sal_Int32) type) +
" failed! Error code: " + OUString::number(hr));
}
if(FAILED(hr = VariantCopy(pVariant, &var)))
{
throw BridgeRuntimeError(
"[automation bridge]UnoConversionUtilities<T>::anyToVariant \n"
"VariantCopy failed for reason: " + OUString::number(hr));
}
}
}
catch (const IllegalArgumentException &)
{
throw;
}
catch (const CannotConvertException &)
{
throw;
}
catch (const BridgeRuntimeError&)
{
throw;
}
catch(const Exception & e)
{
throw BridgeRuntimeError(
"[automation bridge]UnoConversionUtilities<T>::anyToVariant \n"
"Unexpected exception occurred. Message: " + e.Message);
}
catch(...)
{
throw BridgeRuntimeError(
"[automation bridge]UnoConversionUtilities<T>::anyToVariant \n"
"Unexpected exception occurred.");
}
}
template<class T>
void UnoConversionUtilities<T>::anyToVariant(VARIANT* pVariant, const Any& rAny)
{
bool bIllegal = false;
try
{
switch (rAny.getValueTypeClass())
{
case TypeClass_INTERFACE:
{
Reference<XInterface> xInt;
if (rAny >>= xInt)
{
createUnoObjectWrapper(rAny, pVariant);
}
else
{
bIllegal = true;
}
break;
}
case TypeClass_STRUCT:
{
if (rAny.getValueType() == cppu::UnoType<Date>::get() )
{
Date d;
if (rAny >>= d)
{
pVariant->vt = VT_DATE;
pVariant->date = d.Value;
}
else
{
bIllegal = true;
}
}
else if(rAny.getValueType() == cppu::UnoType<Decimal>::get())
{
Decimal d;
if (rAny >>= d)
{
pVariant->vt = VT_DECIMAL;
pVariant->decVal.scale = d.Scale;
pVariant->decVal.sign = d.Sign;
pVariant->decVal.Lo32 = d.LowValue;
pVariant->decVal.Mid32 = d.MiddleValue;
pVariant->decVal.Hi32 = d.HighValue;
}
else
{
bIllegal = true;
}
}
else if (rAny.getValueType() == cppu::UnoType<Currency>::get())
{
Currency c;
if (rAny >>= c)
{
pVariant->vt = VT_CY;
pVariant->cyVal.int64 = c.Value;
}
else
{
bIllegal = true;
}
}
else if(rAny.getValueType() == cppu::UnoType<SCode>::get())
{
SCode s;
if (rAny >>= s)
{
pVariant->vt = VT_ERROR;
pVariant->scode = s.Value;
}
else
{
bIllegal = true;
}
}
else
{
createUnoObjectWrapper(rAny, pVariant);
}
break;
}
case TypeClass_SEQUENCE: // sequence ??? SafeArray descriptor
{
SAFEARRAY* pArray = createUnoSequenceWrapper(rAny);
if (pArray)
{
V_VT(pVariant) = VT_ARRAY | VT_VARIANT;
V_ARRAY(pVariant) = pArray;
}
else
{
bIllegal = true;
}
break;
}
case TypeClass_VOID:
{
HRESULT hr = S_OK;
if (FAILED(hr = VariantClear(pVariant)))
{
throw BridgeRuntimeError(
"[automation bridge]UnoConversionUtilities<T>::anyToVariant\n"
"VariantClear failed with error:" + OUString::number(hr));
}
break;
}
case TypeClass_BOOLEAN:
{
sal_Bool value;
if (rAny >>= value)
{
pVariant->vt = VT_BOOL;
pVariant->boolVal = value == sal_True? VARIANT_TRUE: VARIANT_FALSE;
}
else
{
bIllegal = true;
}
break;
}
case TypeClass_CHAR:
{
// Because VT_UI2 does not conform to oleautomation we convert into VT_I2 instead
sal_uInt16 value = *(sal_Unicode*) rAny.getValue();
pVariant->vt = VT_I2;
pVariant->iVal = value;
break;
}
case TypeClass_STRING:
{
OUString value;
if (rAny >>= value)
{
pVariant->vt = VT_BSTR;
pVariant->bstrVal = SysAllocString(reinterpret_cast<LPCOLESTR>(value.getStr()));
}
else
{
bIllegal = true;
}
break;
}
case TypeClass_FLOAT:
{
float value;
if (rAny >>= value)
{
pVariant->vt = VT_R4;
pVariant->fltVal = value;
}
else
{
bIllegal = true;
}
break;
}
case TypeClass_DOUBLE:
{
double value;
if (rAny >>= value)
{
pVariant->vt = VT_R8;
pVariant->dblVal = value;
}
else
{
bIllegal = true;
}
break;
}
case TypeClass_BYTE:
{
// ole automation does not know a signed char but only unsigned char
sal_Int8 value;
if (rAny >>= value)
{
pVariant->vt = VT_UI1;
pVariant->bVal = value;
}
else
{
bIllegal = true;
}
break;
}
case TypeClass_SHORT: // INT16
case TypeClass_UNSIGNED_SHORT: // UINT16
{
sal_Int16 value;
if (rAny >>= value)
{
pVariant->vt = VT_I2;
pVariant->iVal = value;
}
else
{
bIllegal = true;
}
break;
}
case TypeClass_ENUM:
{
sal_Int32 value = *(sal_Int32*) rAny.getValue();
pVariant->vt = VT_I4;
pVariant->lVal= value;
break;
}
case TypeClass_LONG:
case TypeClass_UNSIGNED_LONG:
{
sal_Int32 value;
if (rAny >>= value)
{
pVariant->vt = VT_I4;
pVariant->lVal= value;
}
else
{
bIllegal = true;
}
break;
}
case TypeClass_HYPER:
{
pVariant->vt = VT_DECIMAL;
pVariant->decVal.scale = 0;
pVariant->decVal.sign = 0;
pVariant->decVal.Hi32 = 0;
sal_Int64 value;
rAny >>= value;
if (value & SAL_CONST_UINT64(0x8000000000000000))
pVariant->decVal.sign = DECIMAL_NEG;
pVariant->decVal.Lo64 = value;
break;
}
case TypeClass_UNSIGNED_HYPER:
{
pVariant->vt = VT_DECIMAL;
pVariant->decVal.scale = 0;
pVariant->decVal.sign = 0;
pVariant->decVal.Hi32 = 0;
sal_uInt64 value;
rAny >>= value;
pVariant->decVal.Lo64 = value;
break;
}
case TypeClass_TYPE:
{
Type type;
rAny >>= type;
CComVariant var;
if (createUnoTypeWrapper(type.getTypeName(), & var) == false)
throw BridgeRuntimeError(
"[automation bridge] UnoConversionUtilities<T>::anyToVariant \n"
"Error during conversion of UNO type to Automation object!");
if (FAILED(VariantCopy(pVariant, &var)))
throw BridgeRuntimeError(
"[automation bridge] UnoConversionUtilities<T>::anyToVariant \n"
"Unexpected error!");
break;
}
default:
//TypeClass_SERVICE:
//TypeClass_EXCEPTION:
//When a InvocationTargetException is thrown when calling XInvocation::invoke
//on a UNO object, then the target exception is directly used to create a
//EXEPINFO structure
//TypeClass_TYPEDEF
//TypeClass_ANY:
//TypeClass_UNKNOWN:
//TypeClass_MODULE:
throw CannotConvertException(
"[automation bridge]UnoConversionUtilities<T>::anyToVariant\n"
"There is no conversion for this UNO type to a Automation type."
"The destination type class is the type class of the UNO "
"argument which was to be converted.",
Reference<XInterface>(), rAny.getValueTypeClass(),
FailReason::TYPE_NOT_SUPPORTED, 0);
break;
}
if (bIllegal)
{
throw IllegalArgumentException(
"[automation bridge]UnoConversionUtilities<T>::anyToVariant\n"
"The provided any of type\" " + rAny.getValueType().getTypeName() +
"\" is unappropriate for conversion!", Reference<XInterface>(), -1);
}
}
catch (const CannotConvertException &)
{
throw;
}
catch (const IllegalArgumentException &)
{
throw;
}
catch(const BridgeRuntimeError&)
{
throw;
}
catch(const Exception & e)
{
throw BridgeRuntimeError(
"[automation bridge]UnoConversionUtilities<T>::anyToVariant \n"
"Unexpected exception occurred. Message: " + e.Message);
}
catch(...)
{
throw BridgeRuntimeError(
"[automation bridge]UnoConversionUtilities<T>::anyToVariant \n"
"Unexpected exception occurred. " );
}
}
// Creates an SAFEARRAY of the specified element and if necessary
// creates a SAFEARRAY with multiple dimensions.
// Used by sal_Bool anyToVariant(VARIANT* pVariant, const Any& rAny, VARTYPE type);
template<class T>
SAFEARRAY* UnoConversionUtilities<T>::createUnoSequenceWrapper(const Any& rSeq, VARTYPE elemtype)
{
if (rSeq.getValueTypeClass() != TypeClass_SEQUENCE)
throw IllegalArgumentException(
"[automation bridge]UnoConversionUtilities<T>::createUnoSequenceWrapper \n"
"The any does not contain a sequence!", 0, 0);
if (elemtype == VT_NULL || elemtype == VT_EMPTY)
throw IllegalArgumentException(
"[automation bridge]UnoConversionUtilities<T>::createUnoSequenceWrapper \n"
"No element type supplied!",0, -1);
SAFEARRAY* pArray= NULL;
// Get the dimensions. This is done by examining the type name string
// The count of brackets determines the dimensions.
OUString sTypeName= rSeq.getValueType().getTypeName();
sal_Int32 dims=0;
for(sal_Int32 lastIndex=0;(lastIndex= sTypeName.indexOf( L'[', lastIndex)) != -1; lastIndex++,dims++);
//get the maximum number of elements per dimensions and the typedescription of the elements
Sequence<sal_Int32> seqElementCounts( dims);
TypeDescription elementTypeDesc;
getElementCountAndTypeOfSequence( rSeq, 1, seqElementCounts, elementTypeDesc );
if( elementTypeDesc.is() )
{
// set up the SAFEARRAY
scoped_array<SAFEARRAYBOUND> sarSafeArrayBound(new SAFEARRAYBOUND[dims]);
SAFEARRAYBOUND* prgsabound= sarSafeArrayBound.get();
for( sal_Int32 i=0; i < dims; i++)
{
//prgsabound[0] is the right most dimension
prgsabound[dims - i - 1].lLbound = 0;
prgsabound[dims - i - 1].cElements = seqElementCounts[i];
}
typelib_TypeDescription* rawTypeDesc= elementTypeDesc.get();
sal_Int32 elementSize= rawTypeDesc->nSize;
size_t oleElementSize= getOleElementSize( elemtype);
// SafeArrayCreate clears the memory for the data itself.
pArray = SafeArrayCreate(elemtype, dims, prgsabound);
// convert the Sequence's elements and populate the SAFEARRAY
if( pArray)
{
// Iterate over every Sequence that contains the actual elements
void* pSAData;
if( SUCCEEDED( SafeArrayAccessData( pArray, &pSAData)))
{
const sal_Int32* parElementCount= seqElementCounts.getConstArray();
uno_Sequence * pMultiSeq= *(uno_Sequence* const*) rSeq.getValue();
sal_Int32 dimsSeq= dims - 1;
// arDimSeqIndices contains the current index of a block of data.
// E.g. Sequence<Sequence<sal_Int32>> , the index would refer to Sequence<sal_Int32>
// In this case arDimSeqIndices would have the size 1. That is the elements are not counted
// but the Sequences that contain those elements.
// The indices ar 0 based
scoped_array<sal_Int32> sarDimsSeqIndices;
sal_Int32* arDimsSeqIndices= NULL;
if( dimsSeq > 0)
{
sarDimsSeqIndices.reset(new sal_Int32[dimsSeq]);
arDimsSeqIndices = sarDimsSeqIndices.get();
memset( arDimsSeqIndices, 0, sizeof( sal_Int32 ) * dimsSeq);
}
char* psaCurrentData= (char*)pSAData;
do
{
// Get the Sequence at the current index , see arDimsSeqIndices
uno_Sequence * pCurrentSeq= pMultiSeq;
sal_Int32 curDim=1; // 1 based
sal_Bool skipSeq= sal_False;
while( curDim <= dimsSeq )
{
// get the Sequence at the index if valid
if( pCurrentSeq->nElements > arDimsSeqIndices[ curDim - 1] ) // don't point to Nirvana
{
// size of Sequence is 4
sal_Int32 offset= arDimsSeqIndices[ curDim - 1] * 4;
pCurrentSeq= *(uno_Sequence**) &pCurrentSeq->elements[ offset];
curDim++;
}
else
{
// There is no Sequence at this index, so skip this index
skipSeq= sal_True;
break;
}
}
if( skipSeq)
continue;
// Calculate the current position within the datablock of the SAFEARRAY
// for the next Sequence.
sal_Int32 memOffset= 0;
sal_Int32 dimWeight= parElementCount[ dims - 1]; // size of the rightmost dimension
for(sal_Int16 idims=0; idims < dimsSeq; idims++ )
{
memOffset+= arDimsSeqIndices[dimsSeq - 1 - idims] * dimWeight;
// now determine the weight of the dimension to the left of the current.
if( dims - 2 - idims >=0)
dimWeight*= parElementCount[dims - 2 - idims];
}
psaCurrentData= (char*)pSAData + memOffset * oleElementSize;
// convert the Sequence and put the elements into the Safearray
for( sal_Int32 i= 0; i < pCurrentSeq->nElements; i++)
{
Any unoElement( pCurrentSeq->elements + i * elementSize, rawTypeDesc );
// The any is being converted into an VARIANT which value is then copied
// to the SAFEARRAY's data block. When copying one has to follow the rules for
// copying certain types, as are VT_DISPATCH, VT_UNKNOWN, VT_VARIANT, VT_BSTR.
// To increase performance, we just do a memcpy of VARIANT::byref. This is possible
// because anyToVariant has already followed the copying rules. To make this
// work there must not be a VariantClear.
// One Exception is VARIANT because I don't know how VariantCopy works.
VARIANT var;
VariantInit( &var);
anyToVariant( &var, unoElement);
if( elemtype == VT_VARIANT )
{
VariantCopy( ( VARIANT*)psaCurrentData, &var);
VariantClear( &var);
}
else
memcpy( psaCurrentData, &var.byref, oleElementSize);
psaCurrentData+= oleElementSize;
}
}
while( incrementMultidimensionalIndex( dimsSeq, parElementCount, arDimsSeqIndices));
SafeArrayUnaccessData( pArray);
}
}
}
return pArray;
}
// Increments a multi dimensional index.
// Returns true as long as the index has been successfully incremented, false otherwise.
// False is also returned if an overflow of the most significant dimension occurs. E.g.
// assume an array with the dimensions (2,2), then the lowest index is (0,0) and the highest
// index is (1,1). If the function is being called with the index (1,1) then the overflow would
// occur, with the result (0,0) and a sal_False as return value.
// Param dimensions - number of dimensions
// Param parDimensionsLength - The array contains the size of each dimension, that is the
// size of the array equals the parameter dimensions.
// The rightmost dimensions is the least significant one
// ( parDimensionsLengths[ dimensions -1 ] ).
// Param parMultiDimensionalIndex - The array contains the index. Each dimension index is
// 0 based.
template<class T>
sal_Bool UnoConversionUtilities<T>::incrementMultidimensionalIndex(sal_Int32 dimensions,
const sal_Int32 * parDimensionLengths,
sal_Int32 * parMultidimensionalIndex)
{
if( dimensions < 1)
return sal_False;
sal_Bool ret= sal_True;
sal_Bool carry= sal_True; // to get into the while loop
sal_Int32 currentDimension= dimensions; //most significant is 1
while( carry)
{
parMultidimensionalIndex[ currentDimension - 1]++;
// if carryover, set index to 0 and handle carry on a level above
if( parMultidimensionalIndex[ currentDimension - 1] > (parDimensionLengths[ currentDimension - 1] - 1))
parMultidimensionalIndex[ currentDimension - 1]= 0;
else
carry= sal_False;
currentDimension --;
// if dimensions drops below 1 and carry is set than then all indices are 0 again
// this is signalled by returning sal_False
if( currentDimension < 1 && carry)
{
carry= sal_False;
ret= sal_False;
}
}
return ret;
}
// Determines the size of a certain OLE type. The function takes
// only those types into account which are oleautomation types and
// can have a value ( unless VT_NULL, VT_EMPTY, VT_ARRAY, VT_BYREF).
// Currently used in createUnoSequenceWrapper to calculate addresses
// for data within a SAFEARRAY.
template<class T>
size_t UnoConversionUtilities<T>::getOleElementSize( VARTYPE type)
{
size_t size;
switch( type)
{
case VT_BOOL: size= sizeof( VARIANT_BOOL);break;
case VT_UI1: size= sizeof( unsigned char);break;
case VT_R8: size= sizeof( double);break;
case VT_R4: size= sizeof( float);break;
case VT_I2: size= sizeof( short);break;
case VT_I4: size= sizeof( long);break;
case VT_BSTR: size= sizeof( BSTR); break;
case VT_ERROR: size= sizeof( SCODE); break;
case VT_DISPATCH:
case VT_UNKNOWN: size= sizeof( IUnknown*); break;
case VT_VARIANT: size= sizeof( VARIANT);break;
default: size= 0;
}
return size;
}
//If a Sequence is being converted into a SAFEARRAY then we possibly have
// to create a SAFEARRAY with multiple dimensions. This is the case when a
// Sequence contains Sequences ( Sequence< Sequence < XXX > > ). The leftmost
// Sequence in the declaration is assumed to represent dimension 1. Because
// all Sequence elements of a Sequence can have different length, we have to
// determine the maximum length which is then the length of the respective
// dimension.
// getElementCountAndTypeOfSequence determines the length of each dimension and calls itself recursively
// in the process.
// param rSeq - an Any that has to contain a Sequence
// param dim - the dimension for which the number of elements is being determined,
// must be one.
// param seqElementCounts - contains the maximum number of elements for each
// dimension. Index 0 contains the number of dimension one.
// After return the Sequence contains the maximum number of
// elements for each dimension.
// The length of the Sequence must equal the number of dimensions.
// param typeClass - TypeClass of the element type that is no Sequence, e.g.
// Sequence< Sequence <Sequence <sal_Int32> > > - type is sal_Int32)
template<class T>
void UnoConversionUtilities<T>::getElementCountAndTypeOfSequence( const Any& rSeq, sal_Int32 dim,
Sequence< sal_Int32 >& seqElementCounts, TypeDescription& typeDesc)
{
sal_Int32 dimCount= (*(uno_Sequence* const *) rSeq.getValue())->nElements;
if( dimCount > seqElementCounts[ dim-1])
seqElementCounts[ dim-1]= dimCount;
// we need the element type to construct the any that is
// passed into getElementCountAndTypeOfSequence again
typelib_TypeDescription* pSeqDesc= NULL;
rSeq.getValueTypeDescription( &pSeqDesc);
typelib_TypeDescriptionReference* pElementDescRef= ((typelib_IndirectTypeDescription*)pSeqDesc)->pType;
// if the elements are Sequences than do recursion
if( dim < seqElementCounts.getLength() )
{
uno_Sequence* pSeq = *(uno_Sequence* const*) rSeq.getValue();
uno_Sequence** arSequences= (uno_Sequence**)pSeq->elements;
for( sal_Int32 i=0; i < dimCount; i++)
{
uno_Sequence* arElement= arSequences[ i];
getElementCountAndTypeOfSequence( Any( &arElement, pElementDescRef), dim + 1 , seqElementCounts, typeDesc);
}
}
else
{
// determine the element type ( e.g. Sequence< Sequence <Sequence <sal_Int32> > > - type is sal_Int32)
typeDesc= pElementDescRef;
}
typelib_typedescription_release( pSeqDesc);
}
template<class T>
SAFEARRAY* UnoConversionUtilities<T>::createUnoSequenceWrapper(const Any& rSeq)
{
SAFEARRAY* pArray = NULL;
sal_uInt32 n = 0;
if( rSeq.getValueTypeClass() != TypeClass_SEQUENCE )
throw IllegalArgumentException(
"[automation bridge]UnoConversionUtilities<T>::createUnoSequenceWrapper\n"
"The UNO argument is not a sequence", 0, -1);
uno_Sequence * punoSeq= *(uno_Sequence**) rSeq.getValue();
typelib_TypeDescriptionReference* pSeqTypeRef= rSeq.getValueTypeRef();
typelib_TypeDescription* pSeqType= NULL;
TYPELIB_DANGER_GET( &pSeqType, pSeqTypeRef);
typelib_IndirectTypeDescription * pSeqIndDec= (typelib_IndirectTypeDescription*) pSeqType;
typelib_TypeDescriptionReference * pSeqElementTypeRef= pSeqIndDec->pType;
TYPELIB_DANGER_RELEASE( pSeqType);
typelib_TypeDescription* pSeqElementDesc= NULL;
TYPELIB_DANGER_GET( &pSeqElementDesc, pSeqElementTypeRef);
sal_Int32 nElementSize= pSeqElementDesc->nSize;
n= punoSeq->nElements;
SAFEARRAYBOUND rgsabound[1];
rgsabound[0].lLbound = 0;
rgsabound[0].cElements = n;
VARIANT oleElement;
long safeI[1];
pArray = SafeArrayCreate(VT_VARIANT, 1, rgsabound);
Any unoElement;
sal_uInt8 * pSeqData= (sal_uInt8*) punoSeq->elements;
for (sal_uInt32 i = 0; i < n; i++)
{
unoElement.setValue( pSeqData + i * nElementSize, pSeqElementDesc);
VariantInit(&oleElement);
anyToVariant(&oleElement, unoElement);
safeI[0] = i;
SafeArrayPutElement(pArray, safeI, &oleElement);
VariantClear(&oleElement);
}
TYPELIB_DANGER_RELEASE( pSeqElementDesc);
return pArray;
}
/* The argument rObj can contain
- UNO struct
- UNO interface
- UNO interface created by this bridge (adapter factory)
- UNO interface created by this bridge ( COM Wrapper)
pVar must be initialized.
*/
template<class T>
void UnoConversionUtilities<T>::createUnoObjectWrapper(const Any & rObj, VARIANT * pVar)
{
MutexGuard guard(getBridgeMutex());
Reference<XInterface> xInt;
TypeClass tc = rObj.getValueTypeClass();
if (tc != TypeClass_INTERFACE && tc != TypeClass_STRUCT)
throw IllegalArgumentException(
"[automation bridge]UnoConversionUtilities<T>::createUnoObjectWrapper \n"
"Cannot create an Automation interface for a UNO type which is not "
"a struct or interface!", 0, -1);
if (rObj.getValueTypeClass() == TypeClass_INTERFACE)
{
if (! (rObj >>= xInt))
throw IllegalArgumentException(
"[automation bridge] UnoConversionUtilities<T>::createUnoObjectWrapper\n "
"Could not create wrapper object for UNO object!", 0, -1);
//If XInterface is NULL, which is a valid value, then simply return NULL.
if ( ! xInt.is())
{
pVar->vt = VT_UNKNOWN;
pVar->punkVal = NULL;
return;
}
//make sure we have the main XInterface which is used with a map
xInt = Reference<XInterface>(xInt, UNO_QUERY);
//If there is already a wrapper for the UNO object then use it
Reference<XInterface> xIntWrapper;
// Does a UNO wrapper exist already ?
IT_Uno it_uno = UnoObjToWrapperMap.find( (sal_uInt32) xInt.get());
if(it_uno != UnoObjToWrapperMap.end())
{
xIntWrapper = it_uno->second;
if (xIntWrapper.is())
{
convertSelfToCom(xIntWrapper, pVar);
return;
}
}
// Is the object a COM wrapper ( either XInvocation, or Adapter object)
// or does it supply an IDispatch by its own ?
else
{
Reference<XInterface> xIntComWrapper = xInt;
typedef boost::unordered_map<sal_uInt32,sal_uInt32>::iterator _IT;
// Adapter? then get the COM wrapper to which the adapter delegates its calls
_IT it= AdapterToWrapperMap.find( (sal_uInt32) xInt.get());
if( it != AdapterToWrapperMap.end() )
xIntComWrapper= reinterpret_cast<XInterface*>(it->second);
if (convertSelfToCom(xIntComWrapper, pVar))
return;
}
}
// If we have no UNO wrapper nor the IDispatch yet then we have to create
// a wrapper. For that we need an XInvocation from the UNO object.
// get an XInvocation or create one using the invocation service
Reference<XInvocation> xInv(xInt, UNO_QUERY);
if ( ! xInv.is())
{
Reference<XSingleServiceFactory> xInvFactory= getInvocationFactory(rObj);
if (xInvFactory.is())
{
Sequence<Any> params(1);
params.getArray()[0] = rObj;
Reference<XInterface> xInt = xInvFactory->createInstanceWithArguments(params);
xInv= Reference<XInvocation>(xInt, UNO_QUERY);
}
}
if (xInv.is())
{
Reference<XInterface> xNewWrapper = createUnoWrapperInstance();
Reference<XInitialization> xInitWrapper(xNewWrapper, UNO_QUERY);
if (xInitWrapper.is())
{
VARTYPE vartype= getVarType( rObj);
if (xInt.is())
{
Any params[3];
params[0] <<= xInv;
params[1] <<= xInt;
params[2] <<= vartype;
xInitWrapper->initialize( Sequence<Any>(params, 3));
}
else
{
Any params[2];
params[0] <<= xInv;
params[1] <<= vartype;
xInitWrapper->initialize( Sequence<Any>(params, 2));
}
// put the newly created object into a map. If the same object will
// be mapped again and there is already a wrapper then the old wrapper
// will be used.
if(xInt.is()) // only interfaces
UnoObjToWrapperMap[(sal_uInt32) xInt.get()]= xNewWrapper;
convertSelfToCom(xNewWrapper, pVar);
return;
}
}
}
template<class T>
void UnoConversionUtilities<T>::variantToAny( const VARIANT* pVariant, Any& rAny,
sal_Bool bReduceValueRange /* = sal_True */)
{
HRESULT hr = S_OK;
try
{
CComVariant var;
// There is no need to support indirect values, since they're not supported by UNO
if( FAILED(hr= VariantCopyInd( &var, const_cast<VARIANTARG*>(pVariant)))) // remove VT_BYREF
throw BridgeRuntimeError(
"[automation bridge] UnoConversionUtilities<T>::variantToAny \n"
"VariantCopyInd failed for reason : " + OUString::number(hr));
if ( ! convertValueObject( & var, rAny))
{
if ((var.vt & VT_ARRAY) > 0)
{
VARTYPE oleTypeFlags = ::sal::static_int_cast< VARTYPE, int >( var.vt ^ VT_ARRAY );
Sequence<Any> unoSeq = createOleArrayWrapper(var.parray, oleTypeFlags);
rAny.setValue( &unoSeq, getCppuType( &unoSeq));
}
else
{
switch (var.vt)
{
case VT_EMPTY:
rAny.setValue(NULL, Type());
break;
case VT_NULL:
rAny.setValue(NULL, Type());
break;
case VT_I2:
rAny.setValue( & var.iVal, cppu::UnoType<sal_Int16>::get());
break;
case VT_I4:
rAny.setValue( & var.lVal, cppu::UnoType<sal_Int32>::get());
// necessary for use in JavaScript ( see "reduceRange")
if( bReduceValueRange)
reduceRange(rAny);
break;
case VT_R4:
rAny.setValue( & var.fltVal, cppu::UnoType<float>::get());
break;
case VT_R8:
rAny.setValue(& var.dblVal, cppu::UnoType<double>::get());
break;
case VT_CY:
{
Currency cy(var.cyVal.int64);
rAny <<= cy;
break;
}
case VT_DATE:
{
Date d(var.date);
rAny <<= d;
break;
}
case VT_BSTR:
{
OUString b(reinterpret_cast<const sal_Unicode*>(var.bstrVal));
rAny.setValue( &b, getCppuType( &b));
break;
}
case VT_UNKNOWN:
case VT_DISPATCH:
{
//check if it is a UNO type
#ifdef __MINGW32__
CComQIPtr<IUnoTypeWrapper, &__uuidof(IUnoTypeWrapper)> spType((IUnknown*) var.byref);
#else
CComQIPtr<IUnoTypeWrapper> spType((IUnknown*) var.byref);
#endif
if (spType)
{
CComBSTR sName;
if (FAILED(spType->get_Name(&sName)))
throw BridgeRuntimeError(
"[automation bridge]UnoConversionUtilities<T>::variantToAny \n"
"Failed to get the type name from a UnoTypeWrapper!");
Type type;
if (getType(sName, type) == false)
{
throw CannotConvertException(
"[automation bridge]UnoConversionUtilities<T>::variantToAny \n"
"A UNO type with the name: " + OUString(reinterpret_cast<const sal_Unicode*>(LPCOLESTR(sName))) +
"does not exist!",
0, TypeClass_UNKNOWN, FailReason::TYPE_NOT_SUPPORTED,0);
}
rAny <<= type;
}
else
{
rAny = createOleObjectWrapper( & var);
}
break;
}
case VT_ERROR:
{
SCode scode(var.scode);
rAny <<= scode;
break;
}
case VT_BOOL:
{
sal_Bool b= var.boolVal == VARIANT_TRUE;
rAny.setValue( &b, getCppuType( &b));
break;
}
case VT_I1:
rAny.setValue( & var.cVal, cppu::UnoType<sal_Int8>::get());
break;
case VT_UI1: // there is no unsigned char in UNO
rAny.setValue( & var.bVal, cppu::UnoType<sal_Int8>::get());
break;
case VT_UI2:
rAny.setValue( & var.uiVal, cppu::UnoType<cppu::UnoUnsignedShortType>::get() );
break;
case VT_UI4:
rAny.setValue( & var.ulVal, cppu::UnoType<sal_uInt32>::get());
break;
case VT_INT:
rAny.setValue( & var.intVal, cppu::UnoType<sal_Int32>::get());
break;
case VT_UINT:
rAny.setValue( & var.uintVal, cppu::UnoType<sal_uInt32>::get());
break;
case VT_VOID:
rAny.setValue( NULL, Type());
break;
case VT_DECIMAL:
{
Decimal dec;
dec.Scale = var.decVal.scale;
dec.Sign = var.decVal.sign;
dec.LowValue = var.decVal.Lo32;
dec.MiddleValue = var.decVal.Mid32;
dec.HighValue = var.decVal.Hi32;
rAny <<= dec;
break;
}
default:
break;
}
}
}
}
catch (const IllegalArgumentException &)
{
throw;
}
catch (const CannotConvertException &)
{
throw;
}
catch (const BridgeRuntimeError &)
{
throw;
}
catch (const Exception & e)
{
throw BridgeRuntimeError("[automation bridge] unexpected exception in "
"UnoConversionUtilities<T>::variantToAny ! Message : \n" +
e.Message);
}
catch(...)
{
throw BridgeRuntimeError(
"[automation bridge] unexpected exception in "
"UnoConversionUtilities<T>::variantToAny !");
}
}
// The function converts an IUnknown* into an UNO interface or struct. The
// IUnknown pointer can constitute different kind of objects:
// 1. a wrapper of an UNO struct (the wrapper was created by this bridge)
// 2. a wrapper of an UNO interface (created by this bridge)
// 3. a dispatch object that implements UNO interfaces
// 4. a dispatch object.
// If the parameter "aType" has a value then the COM object ( pUnknown) is supposed to
// implement the interface described by "aType". Moreover it ( pUnknown) can implement
// several other
// UNO interfaces in which case it has to support the SUPPORTED_INTERFACES_PROP (see
// #define) property. That property contains all names of interfaces.
// "pUnknown" is wrapped by a COM wrapper object that implements XInvocation, e.g.
// IUnknownWrapper_Impl. Additionally an object of type "aType" is created by help
// of the INTERFACE_ADAPTER_FACTORY (see #define) service. The implementation of
// "aType" calls on the COM wrapper's XInvocation::invoke. If the COM object supports
// more then one UNO interfaces, as can be determined by the property
// SUPPORTED_INTERFACES_PROP, then the INTERFACE_ADAPTER_FACTORY creates an object that
// implements all these interfaces.
// This is only done if "pUnknown" is not already a UNO wrapper,
// that is it is actually NOT an UNO object that was converted to a COM object. If it is an
// UNO wrapper than the original UNO object is being extracted, queried for "aType" (if
// it is no struct) and returned.
template<class T>
#ifdef __MINGW32__
Any UnoConversionUtilities<T>::createOleObjectWrapper(VARIANT* pVar, const Type& aType)
#else
Any UnoConversionUtilities<T>::createOleObjectWrapper(VARIANT* pVar, const Type& aType= Type())
#endif
{
//To allow passing "Nothing" in VS 2008 we need to accept VT_EMPTY
if (pVar->vt != VT_UNKNOWN && pVar->vt != VT_DISPATCH && pVar->vt != VT_EMPTY)
throw IllegalArgumentException(
"[automation bridge]UnoConversionUtilities<T>::createOleObjectWrapper \n"
"The VARIANT does not contain an object type! ", 0, -1);
MutexGuard guard( getBridgeMutex());
CComPtr<IUnknown> spUnknown;
CComPtr<IDispatch> spDispatch;
if (pVar->vt == VT_UNKNOWN)
{
spUnknown = pVar->punkVal;
if (spUnknown)
#ifdef __MINGW32__
spUnknown->QueryInterface( IID_IDispatch, reinterpret_cast<LPVOID*>( & spDispatch.p));
#else
spUnknown.QueryInterface( & spDispatch.p);
#endif
}
else if (pVar->vt == VT_DISPATCH && pVar->pdispVal != NULL)
{
CComPtr<IDispatch> spDispatch(pVar->pdispVal);
if (spDispatch)
#ifdef __MINGW32__
spDispatch->QueryInterface( IID_IUnknown, reinterpret_cast<LPVOID*>( & spUnknown.p));
#else
spDispatch.QueryInterface( & spUnknown.p);
#endif
}
static Type VOID_TYPE= Type();
Any ret;
//If no Type is provided and pVar contains IUnknown then we return a XInterface.
//If pVar contains an IDispatch then we return a XInvocation.
Type desiredType = aType;
if (aType == VOID_TYPE)
{
switch (pVar->vt)
{
case VT_EMPTY:
case VT_UNKNOWN:
desiredType = cppu::UnoType<XInterface>::get();
break;
case VT_DISPATCH:
desiredType = cppu::UnoType<XInvocation>::get();
break;
default:
desiredType = aType;
}
}
// COM pointer are NULL, no wrapper required
if (spUnknown == NULL)
{
Reference<XInterface> xInt;
if( aType.getTypeClass() == TypeClass_INTERFACE)
ret.setValue( &xInt, aType);
else if( aType.getTypeClass() == TypeClass_STRUCT)
ret.setValue( NULL, aType);
else
ret <<= xInt;
return ret;
}
// Check if "spUnknown" is a UNO wrapper, that is an UNO object that has been
// passed to COM. Then it supports IUnoObjectWrapper
// and we extract the original UNO object.
#ifdef __MINGW32__
CComQIPtr<IUnoObjectWrapper, &__uuidof(IUnoObjectWrapper)> spUno( spUnknown);
#else
CComQIPtr<IUnoObjectWrapper> spUno( spUnknown);
#endif
if( spUno)
{ // it is a wrapper
Reference<XInterface> xInt;
if( SUCCEEDED( spUno->getOriginalUnoObject( &xInt)))
{
ret <<= xInt;
}
else
{
Any any;
if( SUCCEEDED( spUno->getOriginalUnoStruct(&any)))
ret= any;
}
return ret;
}
// "spUnknown" is a real COM object.
// Before we create a new wrapper object we check if there is an existing wrapper
// There can be two kinds of wrappers, those who wrap dispatch - UNO objects, and those who
// wrap ordinary dispatch objects. The dispatch-UNO objects usually are adapted to represent
// particular UNO interfaces.
Reference<XInterface> xIntWrapper;
CIT_Com cit_currWrapper= ComPtrToWrapperMap.find( reinterpret_cast<sal_uInt32>(spUnknown.p));
if(cit_currWrapper != ComPtrToWrapperMap.end())
xIntWrapper = cit_currWrapper->second;
if (xIntWrapper.is())
{
//Try to find an adapter for the wrapper
//find the proper Adapter. The pointer in the WrapperToAdapterMap are valid as long as
//we get a pointer to the wrapper from ComPtrToWrapperMap, because the Adapter hold references
//to the wrapper.
CIT_Wrap it = WrapperToAdapterMap.find((sal_uInt32) xIntWrapper.get());
if (it == WrapperToAdapterMap.end())
{
// No adapter available.
//The COM component could be a UNO object. Then we need to provide
// a proxy that implements all interfaces
Sequence<Type> seqTypes= getImplementedInterfaces(spUnknown);
Reference<XInterface> xIntAdapter;
if (seqTypes.getLength() > 0)
{
//It is a COM UNO object
xIntAdapter = createAdapter(seqTypes, xIntWrapper);
}
else
{
// Some ordinary COM object
xIntAdapter = xIntWrapper;
}
// return the wrapper directly, return XInterface or XInvocation
ret = xIntWrapper->queryInterface(desiredType);
if ( ! ret.hasValue())
throw IllegalArgumentException(
"[automation bridge]UnoConversionUtilities<T>::createOleObjectWrapper \n"
"The COM object is not suitable for the UNO type: " +
desiredType.getTypeName(), 0, -1);
}
else
{
//There is an adapter available
Reference<XInterface> xIntAdapter((XInterface*) it->second);
ret = xIntAdapter->queryInterface( desiredType);
if ( ! ret.hasValue())
throw IllegalArgumentException(
"[automation bridge]UnoConversionUtilities<T>::createOleObjectWrapper \n"
"The COM object is not suitable for the UNO type: " +
desiredType.getTypeName(), 0, -1);
}
return ret;
}
// No existing wrapper. Therefore create a new proxy.
// If the object implements UNO interfaces then get the types.
Sequence<Type> seqTypes = getImplementedInterfaces(spUnknown);
if (seqTypes.getLength() == 0 &&
aType != VOID_TYPE && aType != cppu::UnoType<XInvocation>::get())
{
seqTypes = Sequence<Type>( & aType, 1);
}
//There is no existing wrapper, therefore we create one for the real COM object
Reference<XInterface> xIntNewProxy= createComWrapperInstance();
if ( ! xIntNewProxy.is())
throw BridgeRuntimeError(
"[automation bridge]UnoConversionUtilities<T>::createOleObjectWrapper \n"
"Could not create proxy object for COM object!");
// initialize the COM wrapper
Reference<XInitialization> xInit( xIntNewProxy, UNO_QUERY);
OSL_ASSERT( xInit.is());
Any params[3];
#ifdef __MINGW32__
params[0] <<= reinterpret_cast<sal_uInt32>( spUnknown.p );
#else
params[0] <<= (sal_uInt32) spUnknown.p;
#endif
sal_Bool bDisp = pVar->vt == VT_DISPATCH ? sal_True : sal_False;
params[1].setValue( & bDisp, getBooleanCppuType());
params[2] <<= seqTypes;
xInit->initialize( Sequence<Any>( params, 3));
#ifdef __MINGW32__
ComPtrToWrapperMap[reinterpret_cast<sal_uInt32>( spUnknown.p )]= xIntNewProxy;
#else
ComPtrToWrapperMap[reinterpret_cast<sal_uInt32>(spUnknown.p)]= xIntNewProxy;
#endif
// we have a wrapper object
//The wrapper implements already XInvocation and XInterface. If
//param aType is void then the object is supposed to have XInvocation.
if (aType == cppu::UnoType<XInvocation>::get()||
(aType == VOID_TYPE && seqTypes.getLength() == 0 ))
{
ret = xIntNewProxy->queryInterface(desiredType);
}
else
{
Reference<XInterface> xIntAdapter =
createAdapter(seqTypes, xIntNewProxy);
ret = xIntAdapter->queryInterface(desiredType);
}
return ret;
}
template<class T>
Reference<XInterface> UnoConversionUtilities<T>::createAdapter(const Sequence<Type>& seqTypes,
const Reference<XInterface>& receiver)
{
Reference< XInterface> xIntAdapterFac;
xIntAdapterFac= m_smgr->createInstance(INTERFACE_ADAPTER_FACTORY);
// We create an adapter object that does not only implement the required type but also
// all types that the COM object pretends to implement. An COM object must therefore
// support the property "_implementedInterfaces".
Reference<XInterface> xIntAdapted;
Reference<XInvocation> xInv(receiver, UNO_QUERY);
Reference<XInvocationAdapterFactory2> xAdapterFac( xIntAdapterFac, UNO_QUERY);
if( xAdapterFac.is())
xIntAdapted= xAdapterFac->createAdapter( xInv, seqTypes);
if( xIntAdapted.is())
{
// Put the pointer to the wrapper object and the interface pointer of the adapted interface
// in a global map. Thus we can determine in a call to createUnoObjectWrapper whether the UNO
// object is a wrapped COM object. In that case we extract the original COM object rather than
// creating a wrapper around the UNO object.
typedef boost::unordered_map<sal_uInt32,sal_uInt32>::value_type VALUE;
AdapterToWrapperMap.insert( VALUE( (sal_uInt32) xIntAdapted.get(), (sal_uInt32) receiver.get()));
WrapperToAdapterMap.insert( VALUE( (sal_uInt32) receiver.get(), (sal_uInt32) xIntAdapted.get()));
}
else
{
throw BridgeRuntimeError(
"[automation bridge]UnoConversionUtilities<T>::createOleObjectWrapper \n"
"Could not create a proxy for COM object! Creation of adapter failed.");
}
return xIntAdapted;
}
// "convertValueObject" converts a JScriptValue object contained in "var" into
// an any. The type contained in the any is stipulated by a "type value" thas
// was set within the JScript script on the value object ( see JScriptValue).
template<class T>
bool UnoConversionUtilities<T>::convertValueObject( const VARIANTARG *var, Any& any)
{
bool ret = false;
try
{
bool bFail = false;
HRESULT hr= S_OK;
CComVariant varDisp;
if(SUCCEEDED(hr = varDisp.ChangeType( VT_DISPATCH, var)))
{
CComPtr <IJScriptValueObject> spValue;
VARIANT_BOOL varBool;
CComBSTR bstrType;
CComVariant varValue;
CComPtr<IDispatch> spDisp( varDisp.pdispVal);
if(spDisp)
{
if(SUCCEEDED( spDisp->QueryInterface( __uuidof( IJScriptValueObject),
reinterpret_cast<void**> (&spValue))))
{
ret = true; // is is a ValueObject
//If it is an out - param then it does not need to be converted. In/out and
// in params does so.
if (SUCCEEDED(hr= spValue->IsOutParam( &varBool)))
{
// if varBool == true then no conversion needed because out param
if (varBool == VARIANT_FALSE)
{
if(SUCCEEDED(hr = spValue->GetValue( & bstrType, & varValue)))
{
Type type;
if (getType(bstrType, type))
variantToAny( & varValue, any, type);
else
bFail = true;
}
else
bFail = true;
}
}
else
bFail = true;
}
}
}
else if( hr != DISP_E_TYPEMISMATCH && hr != E_NOINTERFACE)
bFail = true;
if (bFail)
throw BridgeRuntimeError(
"[automation bridge] Conversion of ValueObject failed ");
}
catch (const BridgeRuntimeError &)
{
throw;
}
catch (const Exception & e)
{
throw BridgeRuntimeError("[automation bridge] unexpected exception in "
"UnoConversionUtilities<T>::convertValueObject ! Message : \n" +
e.Message);
}
catch(...)
{
throw BridgeRuntimeError(
"[automation bridge] unexpected exception in "
"UnoConversionUtilities<T>::convertValueObject !");
}
return ret;
}
template<class T>
void UnoConversionUtilities<T>::dispatchExObject2Sequence( const VARIANTARG* pvar, Any& anySeq, const Type& type)
{
try
{
bool bFail = false;
if( pvar->vt != VT_DISPATCH)
throw BridgeRuntimeError("[automation bridge] UnoConversionUtilities<T>::dispatchExObject2Sequence \n"
"Conversion of dispatch object to Sequence failed!");
IDispatchEx* pdispEx;
HRESULT hr;
if( FAILED( hr= pvar->pdispVal->QueryInterface( IID_IDispatchEx,
reinterpret_cast<void**>( &pdispEx))))
throw BridgeRuntimeError("[automation bridge] UnoConversionUtilities<T>::dispatchExObject2Sequence \n"
"Conversion of dispatch object to Sequence failed!");
DISPID dispid;
OUString sindex;
DISPPARAMS param= {0,0,0,0};
CComVariant result;
OLECHAR* sLength= L"length";
// Get the length of the array. Can also be obtained throu GetNextDispID. The
// method only returns DISPIDs of the array data. Their names are like "0", "1" etc.
if( FAILED( hr= pdispEx->GetIDsOfNames(IID_NULL, &sLength , 1, LOCALE_USER_DEFAULT, &dispid)))
throw BridgeRuntimeError("[automation bridge] UnoConversionUtilities<T>::dispatchExObject2Sequence \n"
"Conversion of dispatch object to Sequence failed!");
if( FAILED( hr= pdispEx->InvokeEx(dispid, LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET,
&param, &result, NULL, NULL)))
throw BridgeRuntimeError("[automation bridge] UnoConversionUtilities<T>::dispatchExObject2Sequence \n"
"Conversion of dispatch object to Sequence failed!");
if( FAILED( VariantChangeType( &result, &result, 0, VT_I4)))
throw BridgeRuntimeError("[automation bridge] UnoConversionUtilities<T>::dispatchExObject2Sequence \n"
"Conversion of dispatch object to Sequence failed!");
long length= result.lVal;
result.Clear();
// get a few basic facts about the sequence, and reallocate:
// create the Sequences
// get the size of the elements
typelib_TypeDescription *pDesc= NULL;
type.getDescription( &pDesc);
typelib_IndirectTypeDescription *pSeqDesc= reinterpret_cast<typelib_IndirectTypeDescription*>(pDesc);
typelib_TypeDescriptionReference *pSeqElemDescRef= pSeqDesc->pType; // type of the Sequence' elements
Type elemType( pSeqElemDescRef);
_typelib_TypeDescription* pSeqElemDesc=NULL;
TYPELIB_DANGER_GET( &pSeqElemDesc, pSeqElemDescRef);
sal_uInt32 nelementSize= pSeqElemDesc->nSize;
TYPELIB_DANGER_RELEASE( pSeqElemDesc);
uno_Sequence *p_uno_Seq;
uno_sequence_construct( &p_uno_Seq, pDesc, NULL, length, cpp_acquire);
typelib_TypeClass typeElement= pSeqDesc->pType->eTypeClass;
char *pArray= p_uno_Seq->elements;
// Get All properties in the object, convert their values to the expected type and
// put them into the passed in sequence
for( sal_Int32 i= 0; i< length; i++)
{
OUString ousIndex=OUString::number( i);
OLECHAR* sindex = (OLECHAR*)ousIndex.getStr();
if( FAILED( hr= pdispEx->GetIDsOfNames(IID_NULL, &sindex , 1, LOCALE_USER_DEFAULT, &dispid)))
{
throw BridgeRuntimeError("[automation bridge] UnoConversionUtilities<T>::dispatchExObject2Sequence \n"
"Conversion of dispatch object to Sequence failed!");
}
if( FAILED( hr= pdispEx->InvokeEx(dispid, LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET,
&param, &result, NULL, NULL)))
{
throw BridgeRuntimeError("[automation bridge] UnoConversionUtilities<T>::dispatchExObject2Sequence \n"
"Conversion of dispatch object to Sequence failed!");
}
// If the result is VT_DISPATCH than the Sequence's element type could be Sequence
// Look that up in the CoreReflection to make clear.
// That requires a recursiv conversion
Any any;
// Destination address within the out-Sequence "anySeq" where to copy the next converted element
void* pDest= (void*)(pArray + (i * nelementSize));
if( result.vt & VT_DISPATCH && typeElement == typelib_TypeClass_SEQUENCE)
{
variantToAny( &result, any, elemType, sal_False);
// copy the converted VARIANT, that is a Sequence to the Sequence
uno_Sequence * p_unoSeq= *(uno_Sequence**)any.getValue();
// just copy the pointer of the uno_Sequence
// nelementSize should be 4 !!!!
memcpy( pDest, &p_unoSeq, nelementSize);
osl_atomic_increment( &p_unoSeq->nRefCount);
}
else // Element type is no Sequence -> do one conversion
{
variantToAny( &result, any, elemType, sal_False);
if( typeElement == typelib_TypeClass_ANY)
{
// copy the converted VARIANT to the Sequence
uno_type_assignData( pDest, pSeqElemDescRef , &any, pSeqElemDescRef,cpp_queryInterface,
cpp_acquire, cpp_release);
}
else
{
// type after conversion must be the element type of the sequence
OSL_ENSURE( (any.getValueTypeClass() == typeElement), "wrong conversion");
uno_type_assignData( pDest, pSeqElemDescRef,const_cast<void*>( any.getValue()), any.getValueTypeRef(),
cpp_queryInterface, cpp_acquire, cpp_release);
}
}
} // else
result.Clear();
anySeq.setValue( &p_uno_Seq, pDesc);
uno_destructData( &p_uno_Seq, pDesc, cpp_release);
typelib_typedescription_release( pDesc);
if (bFail)
throw BridgeRuntimeError(
"[automation bridge] Conversion of ValueObject failed ");
}
catch (const BridgeRuntimeError &)
{
throw;
}
catch (const Exception & e)
{
throw BridgeRuntimeError("[automation bridge] unexpected exception in "
"UnoConversionUtilities<T>::convertValueObject ! Message : \n" +
e.Message);
}
catch(...)
{
throw BridgeRuntimeError(
"[automation bridge] unexpected exception in "
"UnoConversionUtilities<T>::convertValueObject !");
}
}
/* The argument unotype is the type that is expected by the currently called UNO function.
For example: []long, [][]long. If the function calls itself recursively then the element type
is passed on. For example a two dimensional SAFEARRAY of type VT_I4 is to be converted. Then
unotype has to be either void or [][]long. When the function calls itself recursivly then
it passes the element type which is []long.
*/
template<class T>
Sequence<Any> UnoConversionUtilities<T>::createOleArrayWrapperOfDim(SAFEARRAY* pArray,
unsigned int dimCount, unsigned int actDim, long* index, VARTYPE type, const Type& unotype)
{
HRESULT hr= S_OK;
long lBound;
long uBound;
long nCountElements;
SafeArrayGetLBound(pArray, actDim, &lBound);
SafeArrayGetUBound(pArray, actDim, &uBound);
nCountElements= uBound - lBound +1;
Sequence<Any> anySeq(nCountElements);
Any* pUnoArray = anySeq.getArray();
for (index[actDim - 1] = lBound; index[actDim - 1] <= uBound; index[actDim - 1]++)
{
if (actDim > 1 )
{
Sequence<Any> element = createOleArrayWrapperOfDim(pArray, dimCount,
actDim - 1, index, type, getElementTypeOfSequence(unotype));
pUnoArray[index[actDim - 1] - lBound].setValue(&element, getCppuType(&element));
}
else
{
VARIANT variant;
VariantInit(&variant);
V_VT(&variant) = type;
switch (type)
{
case VT_I2:
SafeArrayGetElement(pArray, index, &V_I2(&variant));
break;
case VT_I4:
SafeArrayGetElement(pArray, index, &V_I4(&variant));
break;
case VT_R4:
SafeArrayGetElement(pArray, index, &V_R4(&variant));
break;
case VT_R8:
SafeArrayGetElement(pArray, index, &V_R8(&variant));
break;
case VT_CY:
SafeArrayGetElement(pArray, index, &V_CY(&variant));
break;
case VT_DATE:
SafeArrayGetElement(pArray, index, &V_DATE(&variant));
break;
case VT_BSTR:
hr= SafeArrayGetElement(pArray, index, &V_BSTR(&variant));
break;
case VT_DISPATCH:
SafeArrayGetElement(pArray, index, &V_DISPATCH(&variant));
break;
case VT_ERROR:
SafeArrayGetElement(pArray, index, &V_ERROR(&variant));
break;
case VT_BOOL:
SafeArrayGetElement(pArray, index, &V_BOOL(&variant));
break;
case VT_VARIANT:
SafeArrayGetElement(pArray, index, &variant);
break;
case VT_UNKNOWN:
SafeArrayGetElement(pArray, index, &V_UNKNOWN(&variant));
break;
case VT_I1:
SafeArrayGetElement(pArray, index, &V_I1(&variant));
break;
case VT_UI1:
SafeArrayGetElement(pArray, index, &V_UI1(&variant));
break;
case VT_UI2:
SafeArrayGetElement(pArray, index, &V_UI2(&variant));
break;
case VT_UI4:
SafeArrayGetElement(pArray, index, &V_UI4(&variant));
break;
default:
break;
}
if( unotype.getTypeClass() == TypeClass_VOID)
// the function was called without specifying the destination type
variantToAny(&variant, pUnoArray[index[actDim - 1] - lBound], sal_False);
else
variantToAny(&variant, pUnoArray[index[actDim - 1] - lBound],
getElementTypeOfSequence(unotype), sal_False);
VariantClear(&variant);
}
}
return anySeq;
}
template<class T>
Type UnoConversionUtilities<T>::getElementTypeOfSequence( const Type& seqType)
{
Type retValue;
if( seqType.getTypeClass() != TypeClass_VOID)
{
OSL_ASSERT( seqType.getTypeClass() == TypeClass_SEQUENCE);
typelib_IndirectTypeDescription* pDescSeq= NULL;
seqType.getDescription((typelib_TypeDescription** ) & pDescSeq);
retValue = Type(pDescSeq->pType);
typelib_typedescription_release( (typelib_TypeDescription*) pDescSeq);
}
return retValue;
}
template<class T>
Sequence<Any> UnoConversionUtilities<T>::createOleArrayWrapper(SAFEARRAY* pArray, VARTYPE type, const Type& unoType)
{
sal_uInt32 dim = SafeArrayGetDim(pArray);
Sequence<Any> ret;
if (dim > 0)
{
scoped_array<long> sarIndex(new long[dim]);
long * index = sarIndex.get();
for (unsigned int i = 0; i < dim; i++)
{
index[i] = 0;
}
ret = createOleArrayWrapperOfDim(pArray, dim, dim, index, type, unoType);
}
return ret;
}
// If an VARIANT has the type VT_DISPATCH it can either be an JScript Array
// or some other object. This function finds out if it is such an array or
// not. Currently there's no way to make sure it's an array
// so we assume that when the object has a property "0" then it is an Array.
// An JScript has property like "0", "1", "2" etc. which represent the
// value at the corresponding index of the array
template<class T>
sal_Bool UnoConversionUtilities<T>::isJScriptArray(const VARIANT* rvar)
{
OSL_ENSURE( rvar->vt == VT_DISPATCH, "param is not a VT_DISPATCH");
HRESULT hr;
OLECHAR* sindex= L"0";
DISPID id;
if ( rvar->vt == VT_DISPATCH && rvar->pdispVal )
{
hr= rvar->pdispVal->GetIDsOfNames( IID_NULL, &sindex, 1,
LOCALE_USER_DEFAULT, &id);
if( SUCCEEDED ( hr) )
return sal_True;
}
return sal_False;
}
template<class T>
VARTYPE UnoConversionUtilities<T>::mapTypeClassToVartype( TypeClass type)
{
VARTYPE ret;
switch( type)
{
case TypeClass_INTERFACE: ret= VT_DISPATCH;
break;
case TypeClass_STRUCT: ret= VT_DISPATCH;
break;
case TypeClass_ENUM: ret= VT_I4;
break;
case TypeClass_SEQUENCE: ret= VT_ARRAY;
break;
case TypeClass_ANY: ret= VT_VARIANT;
break;
case TypeClass_BOOLEAN: ret= VT_BOOL;
break;
case TypeClass_CHAR: ret= VT_I2;
break;
case TypeClass_STRING: ret= VT_BSTR;
break;
case TypeClass_FLOAT: ret= VT_R4;
break;
case TypeClass_DOUBLE: ret= VT_R8;
break;
case TypeClass_BYTE: ret= VT_UI1;
break;
case TypeClass_SHORT: ret= VT_I2;
break;
case TypeClass_LONG: ret= VT_I4;
break;
case TypeClass_UNSIGNED_SHORT: ret= VT_UI2;
break;
case TypeClass_UNSIGNED_LONG: ret= VT_UI4;
break;
default:
ret= VT_EMPTY;
}
return ret;
}
template<class T>
Sequence<Type> UnoConversionUtilities<T>::getImplementedInterfaces(IUnknown* pUnk)
{
Sequence<Type> seqTypes;
CComDispatchDriver disp( pUnk);
if( disp)
{
CComVariant var;
HRESULT hr= S_OK;
// There are two different property names possible.
if( FAILED( hr= disp.GetPropertyByName( SUPPORTED_INTERFACES_PROP, &var)))
{
hr= disp.GetPropertyByName( SUPPORTED_INTERFACES_PROP2, &var);
}
if (SUCCEEDED( hr))
{
// we exspect an array( SafeArray or IDispatch) of Strings.
Any anyNames;
variantToAny( &var, anyNames, getCppuType( (Sequence<Any>*) 0));
Sequence<Any> seqAny;
if( anyNames >>= seqAny)
{
seqTypes.realloc( seqAny.getLength());
for( sal_Int32 i=0; i < seqAny.getLength(); i++)
{
OUString typeName;
seqAny[i] >>= typeName;
seqTypes[i]= Type( TypeClass_INTERFACE, typeName);
}
}
}
}
return seqTypes;
}
template<class T>
Reference<XTypeConverter> UnoConversionUtilities<T>::getTypeConverter()
{
if ( ! m_typeConverter.is())
{
MutexGuard guard(getBridgeMutex());
if ( ! m_typeConverter.is())
{
Reference<XInterface> xIntConverter =
m_smgr->createInstance("com.sun.star.script.Converter");
if (xIntConverter.is())
m_typeConverter = Reference<XTypeConverter>(xIntConverter, UNO_QUERY);
}
}
return m_typeConverter;
}
// This function tries to the change the type of a value (contained in the Any)
// to the smallest possible that can hold the value. This is actually done only
// for types of VT_I4 (see o2u_variantToAny). The reason is the following:
// JavaScript passes integer values always as VT_I4. If there is a parameter or
// property of type any then the bridge converts the any's content according
// to "o2u_variantToAny". Because the VARTYPE is VT_I4 the value would be converted
// to TypeClass_LONG. Say the method XPropertySet::setPropertyValue( string name, any value)
// would be called on an object and the property actually is of TypeClass_SHORT.
// After conversion of the VARIANT parameter the Any would contain type
// TypeClass_LONG. Because the corereflection does not cast from long to short
// the "setPropertValue" would fail as the value has not the right type.
// The corereflection does convert small integer types to bigger types.
// Therefore we can reduce the type if possible and avoid the above mentioned
// problem.
// The function is not used when elements are to be converted for Sequences.
#ifndef _REDUCE_RANGE
#define _REDUCE_RANGE
inline void reduceRange( Any& any)
{
OSL_ASSERT( any.getValueTypeClass() == TypeClass_LONG);
sal_Int32 value= *(sal_Int32*)any.getValue();
if( value <= 0x7f && value >= -0x80)
{// -128 bis 127
sal_Int8 charVal= static_cast<sal_Int8>( value);
any.setValue( &charVal, cppu::UnoType<sal_Int8>::get());
}
else if( value <= 0x7fff && value >= -0x8000)
{// -32768 bis 32767
sal_Int16 shortVal= static_cast<sal_Int16>( value);
any.setValue( &shortVal, cppu::UnoType<sal_Int16>::get());
}
}
#endif
} // end namespace
#endif
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */