office-gobmx/svtools/source/graphic/grfmgr2.cxx
Michael Stahl ad36a0caad GraphicManager::ImplCreateOutput: warning C4701:
potentially uninitialized local variable used

Change-Id: I5820b8258a0255a4c9d1c52f2f88bcc3428786ba
2012-07-11 00:15:06 +02:00

1511 lines
59 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2000, 2010 Oracle and/or its affiliates.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
#include <vcl/bmpacc.hxx>
#include <tools/poly.hxx>
#include <vcl/outdev.hxx>
#include <vcl/window.hxx>
#include <vcl/gdimtf.hxx>
#include <vcl/metaact.hxx>
#include <vcl/metric.hxx>
#include <vcl/animate.hxx>
#include <vcl/alpha.hxx>
#include <vcl/virdev.hxx>
#include "grfcache.hxx"
#include <svtools/grfmgr.hxx>
// -----------
// - defines -
// -----------
#define MAP( cVal0, cVal1, nFrac ) ((sal_uInt8)((((long)(cVal0)<<20L)+nFrac*((long)(cVal1)-(cVal0)))>>20L))
#define WATERMARK_LUM_OFFSET 50
#define WATERMARK_CON_OFFSET -70
// ------------------
// - GraphicManager -
// ------------------
GraphicManager::GraphicManager( sal_uLong nCacheSize, sal_uLong nMaxObjCacheSize ) :
mpCache( new GraphicCache( *this, nCacheSize, nMaxObjCacheSize ) )
{
}
GraphicManager::~GraphicManager()
{
for( size_t i = 0, n = maObjList.size(); i < n; ++i )
maObjList[ i ]->GraphicManagerDestroyed();
delete mpCache;
}
void GraphicManager::SetMaxCacheSize( sal_uLong nNewCacheSize )
{
mpCache->SetMaxDisplayCacheSize( nNewCacheSize );
}
void GraphicManager::SetMaxObjCacheSize( sal_uLong nNewMaxObjSize, sal_Bool bDestroyGreaterCached )
{
mpCache->SetMaxObjDisplayCacheSize( nNewMaxObjSize, bDestroyGreaterCached );
}
void GraphicManager::SetCacheTimeout( sal_uLong nTimeoutSeconds )
{
mpCache->SetCacheTimeout( nTimeoutSeconds );
}
void GraphicManager::ReleaseFromCache( const GraphicObject& /*rObj*/ )
{
// !!!
}
sal_Bool GraphicManager::IsInCache( OutputDevice* pOut, const Point& rPt,
const Size& rSz, const GraphicObject& rObj,
const GraphicAttr& rAttr ) const
{
return mpCache->IsInDisplayCache( pOut, rPt, rSz, rObj, rAttr );
}
sal_Bool GraphicManager::DrawObj( OutputDevice* pOut, const Point& rPt, const Size& rSz,
GraphicObject& rObj, const GraphicAttr& rAttr,
const sal_uLong nFlags, sal_Bool& rCached )
{
Point aPt( rPt );
Size aSz( rSz );
sal_Bool bRet = sal_False;
rCached = sal_False;
if( ( rObj.GetType() == GRAPHIC_BITMAP ) || ( rObj.GetType() == GRAPHIC_GDIMETAFILE ) )
{
// create output and fill cache
if( rObj.IsAnimated() || ( pOut->GetOutDevType() == OUTDEV_PRINTER ) ||
( !( nFlags & GRFMGR_DRAW_NO_SUBSTITUTE ) &&
( ( nFlags & GRFMGR_DRAW_SUBSTITUTE ) ||
!( nFlags & GRFMGR_DRAW_CACHED ) ||
( pOut->GetConnectMetaFile() && !pOut->IsOutputEnabled() ) ) ) )
{
// simple output of transformed graphic
const Graphic aGraphic( rObj.GetTransformedGraphic( &rAttr ) );
if( aGraphic.IsSupportedGraphic() )
{
const sal_uInt16 nRot10 = rAttr.GetRotation() % 3600;
if( nRot10 )
{
Polygon aPoly( Rectangle( aPt, aSz ) );
aPoly.Rotate( aPt, nRot10 );
const Rectangle aRotBoundRect( aPoly.GetBoundRect() );
aPt = aRotBoundRect.TopLeft();
aSz = aRotBoundRect.GetSize();
}
aGraphic.Draw( pOut, aPt, aSz );
}
bRet = sal_True;
}
if( !bRet )
{
// cached/direct drawing
if( !mpCache->DrawDisplayCacheObj( pOut, aPt, aSz, rObj, rAttr ) )
bRet = ImplDraw( pOut, aPt, aSz, rObj, rAttr, nFlags, rCached );
else
bRet = rCached = sal_True;
}
}
return bRet;
}
void GraphicManager::ImplRegisterObj( const GraphicObject& rObj, Graphic& rSubstitute,
const rtl::OString* pID, const GraphicObject* pCopyObj )
{
maObjList.push_back( (GraphicObject*)&rObj );
mpCache->AddGraphicObject( rObj, rSubstitute, pID, pCopyObj );
}
void GraphicManager::ImplUnregisterObj( const GraphicObject& rObj )
{
mpCache->ReleaseGraphicObject( rObj );
for( GraphicObjectList_impl::iterator it = maObjList.begin(); it != maObjList.end(); ++it )
{
if ( *it == &rObj ) {
maObjList.erase( it );
break;
}
}
}
void GraphicManager::ImplGraphicObjectWasSwappedOut( const GraphicObject& rObj )
{
mpCache->GraphicObjectWasSwappedOut( rObj );
}
rtl::OString GraphicManager::ImplGetUniqueID( const GraphicObject& rObj ) const
{
return mpCache->GetUniqueID( rObj );
}
sal_Bool GraphicManager::ImplFillSwappedGraphicObject( const GraphicObject& rObj, Graphic& rSubstitute )
{
return( mpCache->FillSwappedGraphicObject( rObj, rSubstitute ) );
}
void GraphicManager::ImplGraphicObjectWasSwappedIn( const GraphicObject& rObj )
{
mpCache->GraphicObjectWasSwappedIn( rObj );
}
sal_Bool GraphicManager::ImplDraw( OutputDevice* pOut, const Point& rPt,
const Size& rSz, GraphicObject& rObj,
const GraphicAttr& rAttr,
const sal_uLong nFlags, sal_Bool& rCached )
{
const Graphic& rGraphic = rObj.GetGraphic();
sal_Bool bRet = sal_False;
if( rGraphic.IsSupportedGraphic() && !rGraphic.IsSwapOut() )
{
if( GRAPHIC_BITMAP == rGraphic.GetType() )
{
const BitmapEx aSrcBmpEx( rGraphic.GetBitmapEx() );
// #i46805# No point in caching a bitmap that is rendered
// via RectFill on the OutDev
if( !(pOut->GetDrawMode() & ( DRAWMODE_BLACKBITMAP | DRAWMODE_WHITEBITMAP )) &&
mpCache->IsDisplayCacheable( pOut, rPt, rSz, rObj, rAttr ) )
{
BitmapEx aDstBmpEx;
if( ImplCreateOutput( pOut, rPt, rSz, aSrcBmpEx, rAttr, nFlags, &aDstBmpEx ) )
{
rCached = mpCache->CreateDisplayCacheObj( pOut, rPt, rSz, rObj, rAttr, aDstBmpEx );
bRet = sal_True;
}
}
if( !bRet )
bRet = ImplCreateOutput( pOut, rPt, rSz, aSrcBmpEx, rAttr, nFlags );
}
else
{
const GDIMetaFile& rSrcMtf = rGraphic.GetGDIMetaFile();
if( mpCache->IsDisplayCacheable( pOut, rPt, rSz, rObj, rAttr ) )
{
GDIMetaFile aDstMtf;
BitmapEx aContainedBmpEx;
if( ImplCreateOutput( pOut, rPt, rSz, rSrcMtf, rAttr, nFlags, aDstMtf, aContainedBmpEx ) )
{
if( !!aContainedBmpEx )
{
// Use bitmap output method, if metafile basically contains only a single
// bitmap (allows caching the resulting pixmap).
BitmapEx aDstBmpEx;
if( ImplCreateOutput( pOut, rPt, rSz, aContainedBmpEx, rAttr, nFlags, &aDstBmpEx ) )
{
rCached = mpCache->CreateDisplayCacheObj( pOut, rPt, rSz, rObj, rAttr, aDstBmpEx );
bRet = sal_True;
}
}
else
{
rCached = mpCache->CreateDisplayCacheObj( pOut, rPt, rSz, rObj, rAttr, aDstMtf );
bRet = sal_True;
}
}
}
if( !bRet )
{
const Graphic aGraphic( rObj.GetTransformedGraphic( &rAttr ) );
if( aGraphic.IsSupportedGraphic() )
{
aGraphic.Draw( pOut, rPt, rSz );
bRet = sal_True;
}
}
}
}
return bRet;
}
sal_Bool GraphicManager::ImplCreateOutput( OutputDevice* pOutputDevice,
const Point& rPoint, const Size& rSize,
const BitmapEx& rBitmapEx, const GraphicAttr& rAttr,
const sal_uLong nFlags, BitmapEx* pBmpEx )
{
bool bRet = false;
Point aOutPointInPixels;
Size aOutSizeInPixels;
int nRotation = rAttr.GetRotation() % 3600;
Size aUnrotatedSizeInPixels( pOutputDevice->LogicToPixel( rSize ) );
BitmapEx aBitmapEx( rBitmapEx );
if( !aUnrotatedSizeInPixels.Width() || !aUnrotatedSizeInPixels.Height() )
return false;
if( nRotation )
{
Polygon aRotationPolygon( Rectangle( rPoint, rSize ) );
aRotationPolygon.Rotate( rPoint, nRotation );
const Rectangle aRotationBoundRectangle( aRotationPolygon.GetBoundRect() );
aOutPointInPixels = pOutputDevice->LogicToPixel( aRotationBoundRectangle.TopLeft() );
aOutSizeInPixels = pOutputDevice->LogicToPixel( aRotationBoundRectangle.GetSize() );
// rotate the image before further processing
aBitmapEx.Rotate( nRotation, COL_TRANSPARENT );
}
else
{
aOutPointInPixels = pOutputDevice->LogicToPixel( rPoint );
aOutSizeInPixels = aUnrotatedSizeInPixels;
}
Point aOutPoint;
Size aOutSize;
const Size& rBitmapSizePixels = rBitmapEx.GetSizePixel();
long nStartX(-1), nStartY(-1), nEndX(-1), nEndY(-1);
bool isHorizontalMirrored = ( rAttr.GetMirrorFlags() & BMP_MIRROR_HORZ ) != 0;
bool isVerticalMirrored = ( rAttr.GetMirrorFlags() & BMP_MIRROR_VERT ) != 0;
Rectangle aBmpRect( aOutPointInPixels, aOutSizeInPixels );
// calculate output sizes
if( !pBmpEx )
{
Point aPoint;
Rectangle aOutRect( aPoint, pOutputDevice->GetOutputSizePixel() );
if( pOutputDevice->GetOutDevType() == OUTDEV_WINDOW )
{
const Region aPaintRgn( ( (Window*) pOutputDevice )->GetPaintRegion() );
if( !aPaintRgn.IsNull() )
{
aOutRect.Intersection( pOutputDevice->LogicToPixel( aPaintRgn.GetBoundRect() ) );
}
}
aOutRect.Intersection( aBmpRect );
if( !aOutRect.IsEmpty() )
{
aOutPoint = pOutputDevice->PixelToLogic( aOutRect.TopLeft() );
aOutSize = pOutputDevice->PixelToLogic( aOutRect.GetSize() );
nStartX = aOutRect.Left() - aBmpRect.Left();
nStartY = aOutRect.Top() - aBmpRect.Top();
nEndX = aOutRect.Right() - aBmpRect.Left();
nEndY = aOutRect.Bottom() - aBmpRect.Top();
}
else
nStartX = -1L; // invalid
}
else
{
aOutPoint = pOutputDevice->PixelToLogic( aOutPointInPixels );
aOutSize = pOutputDevice->PixelToLogic( aOutSizeInPixels );
nStartX = nStartY = 0;
nEndX = aOutSizeInPixels.Width() - 1L;
nEndY = aOutSizeInPixels.Height() - 1L;
}
if( nStartX < 0L )
return false;
// do transformation
// #105229# Don't scale if output size equals bitmap size
// #107226# Copy through only if we're not mirroring
if( !isHorizontalMirrored &&
!isVerticalMirrored &&
aOutSizeInPixels == rBitmapSizePixels &&
!nRotation)
{
// #107226# Use original dimensions when just copying through
aOutPoint = pOutputDevice->PixelToLogic( aOutPointInPixels );
aOutSize = pOutputDevice->PixelToLogic( aOutSizeInPixels );
bRet = true;
}
else
{
// calculate scaling factors
double fScaleX = aBmpRect.GetWidth() / (double) aBitmapEx.GetSizePixel().Width();
double fScaleY = aBmpRect.GetHeight() / (double) aBitmapEx.GetSizePixel().Height();
// calculate crop regions on original non-scaled bitmap
long nOriginalStartX = nStartX / fScaleX;
long nOriginalEndX = nEndX / fScaleX;
long nOriginalStartY = nStartY / fScaleY;
long nOriginalEndY = nEndY / fScaleY;
Size aScaleSize( nEndX - nStartX + 1, nEndY - nStartY + 1 );
// crop the bitmap, so we deal with a smaller bitmap
// todo: join crop and scale step into one step on Bitmap to decrease processing
bRet = aBitmapEx.Crop( Rectangle( nOriginalStartX, nOriginalStartY, nOriginalEndX, nOriginalEndY ) );
// mirror the image - this should not impact the picture dimenstions
if( isHorizontalMirrored || isVerticalMirrored )
bRet = aBitmapEx.Mirror( rAttr.GetMirrorFlags() );
// depending on the flags, scale the image to the desired proportions
// use FAST scale if no smooth scale is desired
if( !( nFlags & GRFMGR_DRAW_SMOOTHSCALE ))
bRet = aBitmapEx.Scale( aScaleSize, BMP_SCALE_FAST );
else
bRet = aBitmapEx.Scale( aScaleSize );
}
if( bRet )
{
// attribute adjustment if neccessary
if( rAttr.IsSpecialDrawMode() || rAttr.IsAdjusted() || rAttr.IsTransparent() )
ImplAdjust( aBitmapEx, rAttr, ADJUSTMENT_DRAWMODE | ADJUSTMENT_COLORS | ADJUSTMENT_TRANSPARENCY );
// OutDev adjustment if neccessary
if( pOutputDevice->GetOutDevType() != OUTDEV_PRINTER &&
pOutputDevice->GetBitCount() <= 8 &&
aBitmapEx.GetBitCount() >= 8 )
{
aBitmapEx.Dither( BMP_DITHER_MATRIX );
}
}
// create output
if( bRet )
{
if( pBmpEx )
{
if( !rAttr.IsTransparent() && !aBitmapEx.IsAlpha() )
aBitmapEx = BitmapEx( aBitmapEx.GetBitmap().CreateDisplayBitmap( pOutputDevice ), aBitmapEx.GetMask() );
*pBmpEx = aBitmapEx;
}
pOutputDevice->DrawBitmapEx( aOutPoint, aOutSize, aBitmapEx);
}
return bRet;
}
// This function checks whether the bitmap is usable for skipping
// mtf rendering by using just this one bitmap (i.e. in case the metafile
// contains just this one pixmap that covers the entire metafile area).
static BitmapEx checkMetadataBitmap( const BitmapEx& rBmpEx,
Point rSrcPoint,
Size rSrcSize,
const Point& rDestPoint,
const Size& rDestSize,
const Size& rRefSize,
bool& o_rbNonBitmapActionEncountered )
{
// NOTE: If you do changes in this function, change checkMetadataBitmap() in grfcache.cxx too.
BitmapEx aBmpEx;
if( rSrcSize == Size())
rSrcSize = rBmpEx.GetSizePixel();
if( rDestPoint != Point( 0, 0 ))
{ // The pixmap in the metafile has an offset (and so would not cover)
// the entire result -> fall back to mtf rendering.
o_rbNonBitmapActionEncountered = true;
return aBmpEx;
}
if( rDestSize != rRefSize )
{ // The pixmap is not fullscale (does not cover the entire metafile area).
// HACK: The code here should refuse to use the bitmap directly
// and fall back to mtf rendering, but there seem to be metafiles
// that do not specify exactly their area (the Windows API requires apps
// the specify it manually, the rectangle is specified as topleft/bottomright
// rather than topleft/size [which may be confusing], and the docs
// on the exact meaning are somewhat confusing as well), so if it turns
// out this metafile really contains just one bitmap and no other painting,
// and if the sizes almost match, just use the pixmap (which will be scaled
// to fit exactly the requested size, so there should not be any actual problem
// caused by this small difference). This will allow caching of the resulting
// (scaled) pixmap, which can make a noticeable performance difference.
if( rBmpEx.GetSizePixel().Width() > 100 && rBmpEx.GetSizePixel().Height() > 100
&& abs( rDestSize.Width() - rRefSize.Width()) < 5
&& abs( rDestSize.Height() - rRefSize.Height()) < 5 )
; // ok, assume it's close enough
else
{ // fall back to mtf rendering
o_rbNonBitmapActionEncountered = true;
return aBmpEx;
}
}
aBmpEx = rBmpEx;
if( (rSrcPoint.X() != 0 && rSrcPoint.Y() != 0) ||
rSrcSize != rBmpEx.GetSizePixel() )
{
// crop bitmap to given source rectangle (no
// need to copy and convert the whole bitmap)
const Rectangle aCropRect( rSrcPoint,
rSrcSize );
aBmpEx.Crop( aCropRect );
}
return aBmpEx;
}
sal_Bool GraphicManager::ImplCreateOutput( OutputDevice* pOut,
const Point& rPt, const Size& rSz,
const GDIMetaFile& rMtf, const GraphicAttr& rAttr,
const sal_uLong /*nFlags*/, GDIMetaFile& rOutMtf, BitmapEx& rOutBmpEx )
{
const Size aNewSize( rMtf.GetPrefSize() );
rOutMtf = rMtf;
// Count bitmap actions, and flag actions that paint, but
// are no bitmaps.
sal_Int32 nNumBitmaps(0);
bool bNonBitmapActionEncountered(false);
if( aNewSize.Width() && aNewSize.Height() && rSz.Width() && rSz.Height() )
{
const double fGrfWH = (double) aNewSize.Width() / aNewSize.Height();
const double fOutWH = (double) rSz.Width() / rSz.Height();
const double fScaleX = fOutWH / fGrfWH;
const double fScaleY = 1.0;
const MapMode rPrefMapMode( rMtf.GetPrefMapMode() );
const Size rSizePix( pOut->LogicToPixel( aNewSize, rPrefMapMode ) );
// NOTE: If you do changes in this function, check GraphicDisplayCacheEntry::IsCacheableAsBitmap
// in grfcache.cxx too.
// Determine whether the metafile basically displays
// a single bitmap (in which case that bitmap is simply used directly
// instead of playing the metafile). Note that
// the solution, as implemented here, is quite suboptimal (the
// cases where a mtf consisting basically of a single bitmap,
// that fail to pass the test below, are probably frequent). A
// better solution would involve FSAA, but that's currently
// expensive, and might trigger bugs on display drivers, if
// VDevs get bigger than the actual screen.
sal_uInt32 nCurPos;
MetaAction* pAct;
for( nCurPos = 0, pAct = (MetaAction*)rOutMtf.FirstAction(); pAct;
pAct = (MetaAction*)rOutMtf.NextAction(), nCurPos++ )
{
MetaAction* pModAct = NULL;
switch( pAct->GetType() )
{
case META_FONT_ACTION:
{
// taking care of font width default if scaling metafile.
MetaFontAction* pA = (MetaFontAction*)pAct;
Font aFont( pA->GetFont() );
if ( !aFont.GetWidth() )
{
FontMetric aFontMetric( pOut->GetFontMetric( aFont ) );
aFont.SetWidth( aFontMetric.GetWidth() );
pModAct = new MetaFontAction( aFont );
}
}
// FALLTHROUGH intended
case META_NULL_ACTION:
// FALLTHROUGH intended
// OutDev state changes (which don't affect bitmap
// output)
case META_LINECOLOR_ACTION:
// FALLTHROUGH intended
case META_FILLCOLOR_ACTION:
// FALLTHROUGH intended
case META_TEXTCOLOR_ACTION:
// FALLTHROUGH intended
case META_TEXTFILLCOLOR_ACTION:
// FALLTHROUGH intended
case META_TEXTALIGN_ACTION:
// FALLTHROUGH intended
case META_TEXTLINECOLOR_ACTION:
// FALLTHROUGH intended
case META_TEXTLINE_ACTION:
// FALLTHROUGH intended
case META_PUSH_ACTION:
// FALLTHROUGH intended
case META_POP_ACTION:
// FALLTHROUGH intended
case META_LAYOUTMODE_ACTION:
// FALLTHROUGH intended
case META_TEXTLANGUAGE_ACTION:
// FALLTHROUGH intended
case META_COMMENT_ACTION:
break;
// bitmap output methods
case META_BMP_ACTION:
if( !nNumBitmaps && !bNonBitmapActionEncountered )
{
MetaBmpAction* pAction = (MetaBmpAction*)pAct;
rOutBmpEx = checkMetadataBitmap(
BitmapEx( pAction->GetBitmap()),
Point(), Size(),
pOut->LogicToPixel( pAction->GetPoint(),
rPrefMapMode ),
pAction->GetBitmap().GetSizePixel(),
rSizePix,
bNonBitmapActionEncountered );
}
++nNumBitmaps;
break;
case META_BMPSCALE_ACTION:
if( !nNumBitmaps && !bNonBitmapActionEncountered )
{
MetaBmpScaleAction* pAction = (MetaBmpScaleAction*)pAct;
rOutBmpEx = checkMetadataBitmap(
BitmapEx( pAction->GetBitmap()),
Point(), Size(),
pOut->LogicToPixel( pAction->GetPoint(),
rPrefMapMode ),
pOut->LogicToPixel( pAction->GetSize(),
rPrefMapMode ),
rSizePix,
bNonBitmapActionEncountered );
}
++nNumBitmaps;
break;
case META_BMPSCALEPART_ACTION:
if( !nNumBitmaps && !bNonBitmapActionEncountered )
{
MetaBmpScalePartAction* pAction = (MetaBmpScalePartAction*)pAct;
rOutBmpEx = checkMetadataBitmap(
BitmapEx( pAction->GetBitmap() ),
pAction->GetSrcPoint(),
pAction->GetSrcSize(),
pOut->LogicToPixel( pAction->GetDestPoint(),
rPrefMapMode ),
pOut->LogicToPixel( pAction->GetDestSize(),
rPrefMapMode ),
rSizePix,
bNonBitmapActionEncountered );
}
++nNumBitmaps;
break;
case META_BMPEX_ACTION:
if( !nNumBitmaps && !bNonBitmapActionEncountered )
{
MetaBmpExAction* pAction = (MetaBmpExAction*)pAct;
rOutBmpEx = checkMetadataBitmap(
pAction->GetBitmapEx(),
Point(), Size(),
pOut->LogicToPixel( pAction->GetPoint(),
rPrefMapMode ),
pAction->GetBitmapEx().GetSizePixel(),
rSizePix,
bNonBitmapActionEncountered );
}
++nNumBitmaps;
break;
case META_BMPEXSCALE_ACTION:
if( !nNumBitmaps && !bNonBitmapActionEncountered )
{
MetaBmpExScaleAction* pAction = (MetaBmpExScaleAction*)pAct;
rOutBmpEx = checkMetadataBitmap(
pAction->GetBitmapEx(),
Point(), Size(),
pOut->LogicToPixel( pAction->GetPoint(),
rPrefMapMode ),
pOut->LogicToPixel( pAction->GetSize(),
rPrefMapMode ),
rSizePix,
bNonBitmapActionEncountered );
}
++nNumBitmaps;
break;
case META_BMPEXSCALEPART_ACTION:
if( !nNumBitmaps && !bNonBitmapActionEncountered )
{
MetaBmpExScalePartAction* pAction = (MetaBmpExScalePartAction*)pAct;
rOutBmpEx = checkMetadataBitmap( pAction->GetBitmapEx(),
pAction->GetSrcPoint(),
pAction->GetSrcSize(),
pOut->LogicToPixel( pAction->GetDestPoint(),
rPrefMapMode ),
pOut->LogicToPixel( pAction->GetDestSize(),
rPrefMapMode ),
rSizePix,
bNonBitmapActionEncountered );
}
++nNumBitmaps;
break;
// these actions actually output something (that's
// different from a bitmap)
case META_RASTEROP_ACTION:
if( ((MetaRasterOpAction*)pAct)->GetRasterOp() == ROP_OVERPAINT )
break;
// FALLTHROUGH intended
case META_PIXEL_ACTION:
// FALLTHROUGH intended
case META_POINT_ACTION:
// FALLTHROUGH intended
case META_LINE_ACTION:
// FALLTHROUGH intended
case META_RECT_ACTION:
// FALLTHROUGH intended
case META_ROUNDRECT_ACTION:
// FALLTHROUGH intended
case META_ELLIPSE_ACTION:
// FALLTHROUGH intended
case META_ARC_ACTION:
// FALLTHROUGH intended
case META_PIE_ACTION:
// FALLTHROUGH intended
case META_CHORD_ACTION:
// FALLTHROUGH intended
case META_POLYLINE_ACTION:
// FALLTHROUGH intended
case META_POLYGON_ACTION:
// FALLTHROUGH intended
case META_POLYPOLYGON_ACTION:
// FALLTHROUGH intended
case META_TEXT_ACTION:
// FALLTHROUGH intended
case META_TEXTARRAY_ACTION:
// FALLTHROUGH intended
case META_STRETCHTEXT_ACTION:
// FALLTHROUGH intended
case META_TEXTRECT_ACTION:
// FALLTHROUGH intended
case META_MASK_ACTION:
// FALLTHROUGH intended
case META_MASKSCALE_ACTION:
// FALLTHROUGH intended
case META_MASKSCALEPART_ACTION:
// FALLTHROUGH intended
case META_GRADIENT_ACTION:
// FALLTHROUGH intended
case META_HATCH_ACTION:
// FALLTHROUGH intended
case META_WALLPAPER_ACTION:
// FALLTHROUGH intended
case META_TRANSPARENT_ACTION:
// FALLTHROUGH intended
case META_EPS_ACTION:
// FALLTHROUGH intended
case META_FLOATTRANSPARENT_ACTION:
// FALLTHROUGH intended
case META_GRADIENTEX_ACTION:
// FALLTHROUGH intended
case META_RENDERGRAPHIC_ACTION:
// FALLTHROUGH intended
// OutDev state changes that _do_ affect bitmap
// output
case META_CLIPREGION_ACTION:
// FALLTHROUGH intended
case META_ISECTRECTCLIPREGION_ACTION:
// FALLTHROUGH intended
case META_ISECTREGIONCLIPREGION_ACTION:
// FALLTHROUGH intended
case META_MOVECLIPREGION_ACTION:
// FALLTHROUGH intended
case META_MAPMODE_ACTION:
// FALLTHROUGH intended
case META_REFPOINT_ACTION:
// FALLTHROUGH intended
default:
bNonBitmapActionEncountered = true;
break;
}
if ( pModAct )
{
rOutMtf.ReplaceAction( pModAct, nCurPos );
pAct->Delete();
}
else
{
if( pAct->GetRefCount() > 1 )
{
rOutMtf.ReplaceAction( pModAct = pAct->Clone(), nCurPos );
pAct->Delete();
}
else
pModAct = pAct;
}
pModAct->Scale( fScaleX, fScaleY );
}
rOutMtf.SetPrefSize( Size( FRound( aNewSize.Width() * fScaleX ),
FRound( aNewSize.Height() * fScaleY ) ) );
}
if( nNumBitmaps != 1 || bNonBitmapActionEncountered )
{
if( rAttr.IsSpecialDrawMode() || rAttr.IsAdjusted() || rAttr.IsMirrored() || rAttr.IsRotated() || rAttr.IsTransparent() )
ImplAdjust( rOutMtf, rAttr, ADJUSTMENT_ALL );
ImplDraw( pOut, rPt, rSz, rOutMtf, rAttr );
rOutBmpEx = BitmapEx();
}
return sal_True;
}
void GraphicManager::ImplAdjust( BitmapEx& rBmpEx, const GraphicAttr& rAttr, sal_uLong nAdjustmentFlags )
{
GraphicAttr aAttr( rAttr );
if( ( nAdjustmentFlags & ADJUSTMENT_DRAWMODE ) && aAttr.IsSpecialDrawMode() )
{
switch( aAttr.GetDrawMode() )
{
case( GRAPHICDRAWMODE_MONO ):
rBmpEx.Convert( BMP_CONVERSION_1BIT_THRESHOLD );
break;
case( GRAPHICDRAWMODE_GREYS ):
rBmpEx.Convert( BMP_CONVERSION_8BIT_GREYS );
break;
case( GRAPHICDRAWMODE_WATERMARK ):
{
aAttr.SetLuminance( aAttr.GetLuminance() + WATERMARK_LUM_OFFSET );
aAttr.SetContrast( aAttr.GetContrast() + WATERMARK_CON_OFFSET );
}
break;
default:
break;
}
}
if( ( nAdjustmentFlags & ADJUSTMENT_COLORS ) && aAttr.IsAdjusted() )
{
rBmpEx.Adjust( aAttr.GetLuminance(), aAttr.GetContrast(),
aAttr.GetChannelR(), aAttr.GetChannelG(), aAttr.GetChannelB(),
aAttr.GetGamma(), aAttr.IsInvert() );
}
if( ( nAdjustmentFlags & ADJUSTMENT_MIRROR ) && aAttr.IsMirrored() )
{
rBmpEx.Mirror( aAttr.GetMirrorFlags() );
}
if( ( nAdjustmentFlags & ADJUSTMENT_ROTATE ) && aAttr.IsRotated() )
{
rBmpEx.Rotate( aAttr.GetRotation(), Color( COL_TRANSPARENT ) );
}
if( ( nAdjustmentFlags & ADJUSTMENT_TRANSPARENCY ) && aAttr.IsTransparent() )
{
AlphaMask aAlpha;
sal_uInt8 cTrans = aAttr.GetTransparency();
if( !rBmpEx.IsTransparent() )
aAlpha = AlphaMask( rBmpEx.GetSizePixel(), &cTrans );
else if( !rBmpEx.IsAlpha() )
{
aAlpha = rBmpEx.GetMask();
aAlpha.Replace( 0, cTrans );
}
else
{
aAlpha = rBmpEx.GetAlpha();
BitmapWriteAccess* pA = aAlpha.AcquireWriteAccess();
if( pA )
{
sal_uLong nTrans = cTrans, nNewTrans;
const long nWidth = pA->Width(), nHeight = pA->Height();
if( pA->GetScanlineFormat() == BMP_FORMAT_8BIT_PAL )
{
for( long nY = 0; nY < nHeight; nY++ )
{
Scanline pAScan = pA->GetScanline( nY );
for( long nX = 0; nX < nWidth; nX++ )
{
nNewTrans = nTrans + *pAScan;
*pAScan++ = (sal_uInt8) ( ( nNewTrans & 0xffffff00 ) ? 255 : nNewTrans );
}
}
}
else
{
BitmapColor aAlphaValue( 0 );
for( long nY = 0; nY < nHeight; nY++ )
{
for( long nX = 0; nX < nWidth; nX++ )
{
nNewTrans = nTrans + pA->GetPixel( nY, nX ).GetIndex();
aAlphaValue.SetIndex( (sal_uInt8) ( ( nNewTrans & 0xffffff00 ) ? 255 : nNewTrans ) );
pA->SetPixel( nY, nX, aAlphaValue );
}
}
}
aAlpha.ReleaseAccess( pA );
}
}
rBmpEx = BitmapEx( rBmpEx.GetBitmap(), aAlpha );
}
}
void GraphicManager::ImplAdjust( GDIMetaFile& rMtf, const GraphicAttr& rAttr, sal_uLong nAdjustmentFlags )
{
GraphicAttr aAttr( rAttr );
if( ( nAdjustmentFlags & ADJUSTMENT_DRAWMODE ) && aAttr.IsSpecialDrawMode() )
{
switch( aAttr.GetDrawMode() )
{
case( GRAPHICDRAWMODE_MONO ):
rMtf.Convert( MTF_CONVERSION_1BIT_THRESHOLD );
break;
case( GRAPHICDRAWMODE_GREYS ):
rMtf.Convert( MTF_CONVERSION_8BIT_GREYS );
break;
case( GRAPHICDRAWMODE_WATERMARK ):
{
aAttr.SetLuminance( aAttr.GetLuminance() + WATERMARK_LUM_OFFSET );
aAttr.SetContrast( aAttr.GetContrast() + WATERMARK_CON_OFFSET );
}
break;
default:
break;
}
}
if( ( nAdjustmentFlags & ADJUSTMENT_COLORS ) && aAttr.IsAdjusted() )
{
rMtf.Adjust( aAttr.GetLuminance(), aAttr.GetContrast(),
aAttr.GetChannelR(), aAttr.GetChannelG(), aAttr.GetChannelB(),
aAttr.GetGamma(), aAttr.IsInvert() );
}
if( ( nAdjustmentFlags & ADJUSTMENT_MIRROR ) && aAttr.IsMirrored() )
{
rMtf.Mirror( aAttr.GetMirrorFlags() );
}
if( ( nAdjustmentFlags & ADJUSTMENT_ROTATE ) && aAttr.IsRotated() )
{
rMtf.Rotate( aAttr.GetRotation() );
}
if( ( nAdjustmentFlags & ADJUSTMENT_TRANSPARENCY ) && aAttr.IsTransparent() )
{
OSL_FAIL( "Missing implementation: Mtf-Transparency" );
}
}
void GraphicManager::ImplAdjust( Animation& rAnimation, const GraphicAttr& rAttr, sal_uLong nAdjustmentFlags )
{
GraphicAttr aAttr( rAttr );
if( ( nAdjustmentFlags & ADJUSTMENT_DRAWMODE ) && aAttr.IsSpecialDrawMode() )
{
switch( aAttr.GetDrawMode() )
{
case( GRAPHICDRAWMODE_MONO ):
rAnimation.Convert( BMP_CONVERSION_1BIT_THRESHOLD );
break;
case( GRAPHICDRAWMODE_GREYS ):
rAnimation.Convert( BMP_CONVERSION_8BIT_GREYS );
break;
case( GRAPHICDRAWMODE_WATERMARK ):
{
aAttr.SetLuminance( aAttr.GetLuminance() + WATERMARK_LUM_OFFSET );
aAttr.SetContrast( aAttr.GetContrast() + WATERMARK_CON_OFFSET );
}
break;
default:
break;
}
}
if( ( nAdjustmentFlags & ADJUSTMENT_COLORS ) && aAttr.IsAdjusted() )
{
rAnimation.Adjust( aAttr.GetLuminance(), aAttr.GetContrast(),
aAttr.GetChannelR(), aAttr.GetChannelG(), aAttr.GetChannelB(),
aAttr.GetGamma(), aAttr.IsInvert() );
}
if( ( nAdjustmentFlags & ADJUSTMENT_MIRROR ) && aAttr.IsMirrored() )
{
rAnimation.Mirror( aAttr.GetMirrorFlags() );
}
if( ( nAdjustmentFlags & ADJUSTMENT_ROTATE ) && aAttr.IsRotated() )
{
OSL_FAIL( "Missing implementation: Animation-Rotation" );
}
if( ( nAdjustmentFlags & ADJUSTMENT_TRANSPARENCY ) && aAttr.IsTransparent() )
{
OSL_FAIL( "Missing implementation: Animation-Transparency" );
}
}
void GraphicManager::ImplDraw( OutputDevice* pOut, const Point& rPt, const Size& rSz,
const GDIMetaFile& rMtf, const GraphicAttr& rAttr )
{
sal_uInt16 nRot10 = rAttr.GetRotation() % 3600;
Point aOutPt( rPt );
Size aOutSz( rSz );
if( nRot10 )
{
Polygon aPoly( Rectangle( aOutPt, aOutSz ) );
aPoly.Rotate( aOutPt, nRot10 );
const Rectangle aRotBoundRect( aPoly.GetBoundRect() );
aOutPt = aRotBoundRect.TopLeft();
aOutSz = aRotBoundRect.GetSize();
}
pOut->Push( PUSH_CLIPREGION );
pOut->IntersectClipRegion( Rectangle( aOutPt, aOutSz ) );
( (GDIMetaFile&) rMtf ).WindStart();
( (GDIMetaFile&) rMtf ).Play( pOut, aOutPt, aOutSz );
( (GDIMetaFile&) rMtf ).WindStart();
pOut->Pop();
}
struct ImplTileInfo
{
ImplTileInfo() : aTileTopLeft(), aNextTileTopLeft(), aTileSizePixel(), nTilesEmptyX(0), nTilesEmptyY(0) {}
Point aTileTopLeft; // top, left position of the rendered tile
Point aNextTileTopLeft; // top, left position for next recursion
// level's tile
Size aTileSizePixel; // size of the generated tile (might
// differ from
// aNextTileTopLeft-aTileTopLeft, because
// this is nExponent*prevTileSize. The
// generated tile is always nExponent
// times the previous tile, such that it
// can be used in the next stage. The
// required area coverage is often
// less. The extraneous area covered is
// later overwritten by the next stage)
int nTilesEmptyX; // number of original tiles empty right of
// this tile. This counts from
// aNextTileTopLeft, i.e. the additional
// area covered by aTileSizePixel is not
// considered here. This is for
// unification purposes, as the iterative
// calculation of the next level's empty
// tiles has to be based on this value.
int nTilesEmptyY; // as above, for Y
};
bool GraphicObject::ImplRenderTempTile( VirtualDevice& rVDev, int nExponent,
int nNumTilesX, int nNumTilesY,
const Size& rTileSizePixel,
const GraphicAttr* pAttr, sal_uLong nFlags )
{
if( nExponent <= 1 )
return false;
// determine MSB factor
int nMSBFactor( 1 );
while( nNumTilesX / nMSBFactor != 0 ||
nNumTilesY / nMSBFactor != 0 )
{
nMSBFactor *= nExponent;
}
// one less
nMSBFactor /= nExponent;
ImplTileInfo aTileInfo;
// #105229# Switch off mapping (converting to logic and back to
// pixel might cause roundoff errors)
sal_Bool bOldMap( rVDev.IsMapModeEnabled() );
rVDev.EnableMapMode( sal_False );
bool bRet( ImplRenderTileRecursive( rVDev, nExponent, nMSBFactor, nNumTilesX, nNumTilesY,
nNumTilesX, nNumTilesY, rTileSizePixel, pAttr, nFlags, aTileInfo ) );
rVDev.EnableMapMode( bOldMap );
return bRet;
}
// define for debug drawings
//#define DBG_TEST
// see header comment. this works similar to base conversion of a
// number, i.e. if the exponent is 10, then the number for every tile
// size is given by the decimal place of the corresponding decimal
// representation.
bool GraphicObject::ImplRenderTileRecursive( VirtualDevice& rVDev, int nExponent, int nMSBFactor,
int nNumOrigTilesX, int nNumOrigTilesY,
int nRemainderTilesX, int nRemainderTilesY,
const Size& rTileSizePixel, const GraphicAttr* pAttr,
sal_uLong nFlags, ImplTileInfo& rTileInfo )
{
// gets loaded with our tile bitmap
GraphicObject aTmpGraphic;
// stores a flag that renders the zero'th tile position
// (i.e. (0,0)+rCurrPos) only if we're at the bottom of the
// recursion stack. All other position already have that tile
// rendered, because the lower levels painted their generated tile
// there.
bool bNoFirstTileDraw( false );
// what's left when we're done with our tile size
const int nNewRemainderX( nRemainderTilesX % nMSBFactor );
const int nNewRemainderY( nRemainderTilesY % nMSBFactor );
// gets filled out from the recursive call with info of what's
// been generated
ImplTileInfo aTileInfo;
// current output position while drawing
Point aCurrPos;
int nX, nY;
// check for recursion's end condition: LSB place reached?
if( nMSBFactor == 1 )
{
aTmpGraphic = *this;
// set initial tile size -> orig size
aTileInfo.aTileSizePixel = rTileSizePixel;
aTileInfo.nTilesEmptyX = nNumOrigTilesX;
aTileInfo.nTilesEmptyY = nNumOrigTilesY;
}
else if( ImplRenderTileRecursive( rVDev, nExponent, nMSBFactor/nExponent,
nNumOrigTilesX, nNumOrigTilesY,
nNewRemainderX, nNewRemainderY,
rTileSizePixel, pAttr, nFlags, aTileInfo ) )
{
// extract generated tile -> see comment on the first loop below
BitmapEx aTileBitmap( rVDev.GetBitmap( aTileInfo.aTileTopLeft, aTileInfo.aTileSizePixel ) );
aTmpGraphic = GraphicObject( aTileBitmap );
// fill stripes left over from upstream levels:
//
// x0000
// 0
// 0
// 0
// 0
//
// where x denotes the place filled by our recursive predecessors
// check whether we have to fill stripes here. Although not
// obvious, there is one case where we can skip this step: if
// the previous recursion level (the one who filled our
// aTileInfo) had zero area to fill, then there are no white
// stripes left, naturally. This happens if the digit
// associated to that level has a zero, and can be checked via
// aTileTopLeft==aNextTileTopLeft.
if( aTileInfo.aTileTopLeft != aTileInfo.aNextTileTopLeft )
{
// now fill one row from aTileInfo.aNextTileTopLeft.X() all
// the way to the right
aCurrPos.X() = aTileInfo.aNextTileTopLeft.X();
aCurrPos.Y() = aTileInfo.aTileTopLeft.Y();
for( nX=0; nX < aTileInfo.nTilesEmptyX; nX += nMSBFactor )
{
if( !aTmpGraphic.Draw( &rVDev, aCurrPos, aTileInfo.aTileSizePixel, pAttr, nFlags ) )
return false;
aCurrPos.X() += aTileInfo.aTileSizePixel.Width();
}
#ifdef DBG_TEST
// rVDev.SetFillColor( COL_WHITE );
rVDev.SetFillColor();
rVDev.SetLineColor( Color( 255 * nExponent / nMSBFactor, 255 - 255 * nExponent / nMSBFactor, 128 - 255 * nExponent / nMSBFactor ) );
rVDev.DrawEllipse( Rectangle(aTileInfo.aNextTileTopLeft.X(), aTileInfo.aTileTopLeft.Y(),
aTileInfo.aNextTileTopLeft.X() - 1 + (aTileInfo.nTilesEmptyX/nMSBFactor)*aTileInfo.aTileSizePixel.Width(),
aTileInfo.aTileTopLeft.Y() + aTileInfo.aTileSizePixel.Height() - 1) );
#endif
// now fill one column from aTileInfo.aNextTileTopLeft.Y() all
// the way to the bottom
aCurrPos.X() = aTileInfo.aTileTopLeft.X();
aCurrPos.Y() = aTileInfo.aNextTileTopLeft.Y();
for( nY=0; nY < aTileInfo.nTilesEmptyY; nY += nMSBFactor )
{
if( !aTmpGraphic.Draw( &rVDev, aCurrPos, aTileInfo.aTileSizePixel, pAttr, nFlags ) )
return false;
aCurrPos.Y() += aTileInfo.aTileSizePixel.Height();
}
#ifdef DBG_TEST
rVDev.DrawEllipse( Rectangle(aTileInfo.aTileTopLeft.X(), aTileInfo.aNextTileTopLeft.Y(),
aTileInfo.aTileTopLeft.X() + aTileInfo.aTileSizePixel.Width() - 1,
aTileInfo.aNextTileTopLeft.Y() - 1 + (aTileInfo.nTilesEmptyY/nMSBFactor)*aTileInfo.aTileSizePixel.Height()) );
#endif
}
else
{
// Thought that aTileInfo.aNextTileTopLeft tile has always
// been drawn already, but that's wrong: typically,
// _parts_ of that tile have been drawn, since the
// previous level generated the tile there. But when
// aTileInfo.aNextTileTopLeft!=aTileInfo.aTileTopLeft, the
// difference between these two values is missing in the
// lower right corner of this first tile. So, can do that
// only here.
bNoFirstTileDraw = true;
}
}
else
{
return false;
}
// calc number of original tiles in our drawing area without
// remainder
nRemainderTilesX -= nNewRemainderX;
nRemainderTilesY -= nNewRemainderY;
// fill tile info for calling method
rTileInfo.aTileTopLeft = aTileInfo.aNextTileTopLeft;
rTileInfo.aNextTileTopLeft = Point( rTileInfo.aTileTopLeft.X() + rTileSizePixel.Width()*nRemainderTilesX,
rTileInfo.aTileTopLeft.Y() + rTileSizePixel.Height()*nRemainderTilesY );
rTileInfo.aTileSizePixel = Size( rTileSizePixel.Width()*nMSBFactor*nExponent,
rTileSizePixel.Height()*nMSBFactor*nExponent );
rTileInfo.nTilesEmptyX = aTileInfo.nTilesEmptyX - nRemainderTilesX;
rTileInfo.nTilesEmptyY = aTileInfo.nTilesEmptyY - nRemainderTilesY;
// init output position
aCurrPos = aTileInfo.aNextTileTopLeft;
// fill our drawing area. Fill possibly more, to create the next
// bigger tile size -> see bitmap extraction above. This does no
// harm, since everything right or below our actual area is
// overdrawn by our caller. Just in case we're in the last level,
// we don't draw beyond the right or bottom border.
for( nY=0; nY < aTileInfo.nTilesEmptyY && nY < nExponent*nMSBFactor; nY += nMSBFactor )
{
aCurrPos.X() = aTileInfo.aNextTileTopLeft.X();
for( nX=0; nX < aTileInfo.nTilesEmptyX && nX < nExponent*nMSBFactor; nX += nMSBFactor )
{
if( bNoFirstTileDraw )
bNoFirstTileDraw = false; // don't draw first tile position
else if( !aTmpGraphic.Draw( &rVDev, aCurrPos, aTileInfo.aTileSizePixel, pAttr, nFlags ) )
return false;
aCurrPos.X() += aTileInfo.aTileSizePixel.Width();
}
aCurrPos.Y() += aTileInfo.aTileSizePixel.Height();
}
#ifdef DBG_TEST
// rVDev.SetFillColor( COL_WHITE );
rVDev.SetFillColor();
rVDev.SetLineColor( Color( 255 * nExponent / nMSBFactor, 255 - 255 * nExponent / nMSBFactor, 128 - 255 * nExponent / nMSBFactor ) );
rVDev.DrawRect( Rectangle((rTileInfo.aTileTopLeft.X())*rTileSizePixel.Width(),
(rTileInfo.aTileTopLeft.Y())*rTileSizePixel.Height(),
(rTileInfo.aNextTileTopLeft.X())*rTileSizePixel.Width()-1,
(rTileInfo.aNextTileTopLeft.Y())*rTileSizePixel.Height()-1) );
#endif
return true;
}
bool GraphicObject::ImplDrawTiled( OutputDevice* pOut, const Rectangle& rArea, const Size& rSizePixel,
const Size& rOffset, const GraphicAttr* pAttr, sal_uLong nFlags, int nTileCacheSize1D )
{
// how many tiles to generate per recursion step
enum{ SubdivisionExponent=2 };
const MapMode aOutMapMode( pOut->GetMapMode() );
const MapMode aMapMode( aOutMapMode.GetMapUnit(), Point(), aOutMapMode.GetScaleX(), aOutMapMode.GetScaleY() );
bool bRet( false );
// #i42643# Casting to Int64, to avoid integer overflow for
// huge-DPI output devices
if( GetGraphic().GetType() == GRAPHIC_BITMAP &&
static_cast<sal_Int64>(rSizePixel.Width()) * rSizePixel.Height() <
static_cast<sal_Int64>(nTileCacheSize1D)*nTileCacheSize1D )
{
// First combine very small bitmaps into a larger tile
// ===================================================
VirtualDevice aVDev;
const int nNumTilesInCacheX( (nTileCacheSize1D + rSizePixel.Width()-1) / rSizePixel.Width() );
const int nNumTilesInCacheY( (nTileCacheSize1D + rSizePixel.Height()-1) / rSizePixel.Height() );
aVDev.SetOutputSizePixel( Size( nNumTilesInCacheX*rSizePixel.Width(),
nNumTilesInCacheY*rSizePixel.Height() ) );
aVDev.SetMapMode( aMapMode );
// draw bitmap content
if( ImplRenderTempTile( aVDev, SubdivisionExponent, nNumTilesInCacheX,
nNumTilesInCacheY, rSizePixel, pAttr, nFlags ) )
{
BitmapEx aTileBitmap( aVDev.GetBitmap( Point(0,0), aVDev.GetOutputSize() ) );
// draw alpha content, if any
if( IsTransparent() )
{
GraphicObject aAlphaGraphic;
if( GetGraphic().IsAlpha() )
aAlphaGraphic.SetGraphic( GetGraphic().GetBitmapEx().GetAlpha().GetBitmap() );
else
aAlphaGraphic.SetGraphic( GetGraphic().GetBitmapEx().GetMask() );
if( aAlphaGraphic.ImplRenderTempTile( aVDev, SubdivisionExponent, nNumTilesInCacheX,
nNumTilesInCacheY, rSizePixel, pAttr, nFlags ) )
{
// Combine bitmap and alpha/mask
if( GetGraphic().IsAlpha() )
aTileBitmap = BitmapEx( aTileBitmap.GetBitmap(),
AlphaMask( aVDev.GetBitmap( Point(0,0), aVDev.GetOutputSize() ) ) );
else
aTileBitmap = BitmapEx( aTileBitmap.GetBitmap(),
aVDev.GetBitmap( Point(0,0), aVDev.GetOutputSize() ).CreateMask( Color(COL_WHITE) ) );
}
}
// paint generated tile
GraphicObject aTmpGraphic( aTileBitmap );
bRet = aTmpGraphic.ImplDrawTiled( pOut, rArea,
aTileBitmap.GetSizePixel(),
rOffset, pAttr, nFlags, nTileCacheSize1D );
}
}
else
{
const Size aOutOffset( pOut->LogicToPixel( rOffset, aOutMapMode ) );
const Rectangle aOutArea( pOut->LogicToPixel( rArea, aOutMapMode ) );
// number of invisible (because out-of-area) tiles
int nInvisibleTilesX;
int nInvisibleTilesY;
// round towards -infty for negative offset
if( aOutOffset.Width() < 0 )
nInvisibleTilesX = (aOutOffset.Width() - rSizePixel.Width() + 1) / rSizePixel.Width();
else
nInvisibleTilesX = aOutOffset.Width() / rSizePixel.Width();
// round towards -infty for negative offset
if( aOutOffset.Height() < 0 )
nInvisibleTilesY = (aOutOffset.Height() - rSizePixel.Height() + 1) / rSizePixel.Height();
else
nInvisibleTilesY = aOutOffset.Height() / rSizePixel.Height();
// origin from where to 'virtually' start drawing in pixel
const Point aOutOrigin( pOut->LogicToPixel( Point( rArea.Left() - rOffset.Width(),
rArea.Top() - rOffset.Height() ) ) );
// position in pixel from where to really start output
const Point aOutStart( aOutOrigin.X() + nInvisibleTilesX*rSizePixel.Width(),
aOutOrigin.Y() + nInvisibleTilesY*rSizePixel.Height() );
pOut->Push( PUSH_CLIPREGION );
pOut->IntersectClipRegion( rArea );
// Paint all tiles
// ===============
bRet = ImplDrawTiled( *pOut, aOutStart,
(aOutArea.GetWidth() + aOutArea.Left() - aOutStart.X() + rSizePixel.Width() - 1) / rSizePixel.Width(),
(aOutArea.GetHeight() + aOutArea.Top() - aOutStart.Y() + rSizePixel.Height() - 1) / rSizePixel.Height(),
rSizePixel, pAttr, nFlags );
pOut->Pop();
}
return bRet;
}
bool GraphicObject::ImplDrawTiled( OutputDevice& rOut, const Point& rPosPixel,
int nNumTilesX, int nNumTilesY,
const Size& rTileSizePixel, const GraphicAttr* pAttr, sal_uLong nFlags )
{
Point aCurrPos( rPosPixel );
Size aTileSizeLogic( rOut.PixelToLogic( rTileSizePixel ) );
int nX, nY;
// #107607# Use logical coordinates for metafile playing, too
bool bDrawInPixel( rOut.GetConnectMetaFile() == NULL && GRAPHIC_BITMAP == GetType() );
bool bRet = false;
// #105229# Switch off mapping (converting to logic and back to
// pixel might cause roundoff errors)
bool bOldMap( rOut.IsMapModeEnabled() );
if( bDrawInPixel )
rOut.EnableMapMode( sal_False );
for( nY=0; nY < nNumTilesY; ++nY )
{
aCurrPos.X() = rPosPixel.X();
for( nX=0; nX < nNumTilesX; ++nX )
{
// #105229# work with pixel coordinates here, mapping is disabled!
// #104004# don't disable mapping for metafile recordings
// #108412# don't quit the loop if one draw fails
// update return value. This method should return true, if
// at least one of the looped Draws succeeded.
bRet |= Draw( &rOut,
bDrawInPixel ? aCurrPos : rOut.PixelToLogic( aCurrPos ),
bDrawInPixel ? rTileSizePixel : aTileSizeLogic,
pAttr, nFlags );
aCurrPos.X() += rTileSizePixel.Width();
}
aCurrPos.Y() += rTileSizePixel.Height();
}
if( bDrawInPixel )
rOut.EnableMapMode( bOldMap );
return bRet;
}
void GraphicObject::ImplTransformBitmap( BitmapEx& rBmpEx,
const GraphicAttr& rAttr,
const Size& rCropLeftTop,
const Size& rCropRightBottom,
const Rectangle& rCropRect,
const Size& rDstSize,
sal_Bool bEnlarge ) const
{
// #107947# Extracted from svdograf.cxx
// #104115# Crop the bitmap
if( rAttr.IsCropped() )
{
rBmpEx.Crop( rCropRect );
// #104115# Negative crop sizes mean: enlarge bitmap and pad
if( bEnlarge && (
rCropLeftTop.Width() < 0 ||
rCropLeftTop.Height() < 0 ||
rCropRightBottom.Width() < 0 ||
rCropRightBottom.Height() < 0 ) )
{
Size aBmpSize( rBmpEx.GetSizePixel() );
sal_Int32 nPadLeft( rCropLeftTop.Width() < 0 ? -rCropLeftTop.Width() : 0 );
sal_Int32 nPadTop( rCropLeftTop.Height() < 0 ? -rCropLeftTop.Height() : 0 );
sal_Int32 nPadTotalWidth( aBmpSize.Width() + nPadLeft + (rCropRightBottom.Width() < 0 ? -rCropRightBottom.Width() : 0) );
sal_Int32 nPadTotalHeight( aBmpSize.Height() + nPadTop + (rCropRightBottom.Height() < 0 ? -rCropRightBottom.Height() : 0) );
BitmapEx aBmpEx2;
if( rBmpEx.IsTransparent() )
{
if( rBmpEx.IsAlpha() )
aBmpEx2 = BitmapEx( rBmpEx.GetBitmap(), rBmpEx.GetAlpha() );
else
aBmpEx2 = BitmapEx( rBmpEx.GetBitmap(), rBmpEx.GetMask() );
}
else
{
// #104115# Generate mask bitmap and init to zero
Bitmap aMask( aBmpSize, 1 );
aMask.Erase( Color(0,0,0) );
// #104115# Always generate transparent bitmap, we need the border transparent
aBmpEx2 = BitmapEx( rBmpEx.GetBitmap(), aMask );
// #104115# Add opaque mask to source bitmap, otherwise the destination remains transparent
rBmpEx = aBmpEx2;
}
aBmpEx2.SetSizePixel( Size(nPadTotalWidth, nPadTotalHeight) );
aBmpEx2.Erase( Color(0xFF,0,0,0) );
aBmpEx2.CopyPixel( Rectangle( Point(nPadLeft, nPadTop), aBmpSize ), Rectangle( Point(0, 0), aBmpSize ), &rBmpEx );
rBmpEx = aBmpEx2;
}
}
const Size aSizePixel( rBmpEx.GetSizePixel() );
if( rAttr.GetRotation() != 0 && !IsAnimated() )
{
if( aSizePixel.Width() && aSizePixel.Height() && rDstSize.Width() && rDstSize.Height() )
{
double fSrcWH = (double) aSizePixel.Width() / aSizePixel.Height();
double fDstWH = (double) rDstSize.Width() / rDstSize.Height();
double fScaleX = 1.0, fScaleY = 1.0;
// always choose scaling to shrink bitmap
if( fSrcWH < fDstWH )
fScaleY = aSizePixel.Width() / ( fDstWH * aSizePixel.Height() );
else
fScaleX = fDstWH * aSizePixel.Height() / aSizePixel.Width();
rBmpEx.Scale( fScaleX, fScaleY );
}
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */