e12fa18c69
Turns out we can save about 500Mb of preprocessor input if we use rtl_math_approxEqual from rtl/math.h instead of its C++ wrapper rtl::math::approxEqual from rtl/math.hxx and manage the fallout accordingly. Before: bin/includebloat.awk | head sum total bytes included (excluding system headers): 19017296671 After: $ bin/includebloat.awk | head sum total bytes included (excluding system headers): 18535432672 Change-Id: I1691171f3a309405a7099882ad9989d147f59118 Reviewed-on: https://gerrit.libreoffice.org/c/core/+/92508 Tested-by: Jenkins Reviewed-by: Miklos Vajna <vmiklos@collabora.com>
656 lines
22 KiB
C++
656 lines
22 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/*
|
|
* This file is part of the LibreOffice project.
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
* This file incorporates work covered by the following license notice:
|
|
*
|
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed
|
|
* with this work for additional information regarding copyright
|
|
* ownership. The ASF licenses this file to you under the Apache
|
|
* License, Version 2.0 (the "License"); you may not use this file
|
|
* except in compliance with the License. You may obtain a copy of
|
|
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
|
|
*/
|
|
|
|
#include <basegfx/polygon/b2dpolypolygontools.hxx>
|
|
#include <osl/diagnose.h>
|
|
#include <com/sun/star/drawing/PolyPolygonBezierCoords.hpp>
|
|
#include <basegfx/polygon/b2dpolypolygon.hxx>
|
|
#include <basegfx/polygon/b2dpolygon.hxx>
|
|
#include <basegfx/polygon/b2dpolygontools.hxx>
|
|
#include <basegfx/numeric/ftools.hxx>
|
|
#include <rtl/math.hxx>
|
|
|
|
#include <algorithm>
|
|
#include <numeric>
|
|
|
|
namespace basegfx::utils
|
|
{
|
|
B2DPolyPolygon correctOrientations(const B2DPolyPolygon& rCandidate)
|
|
{
|
|
B2DPolyPolygon aRetval(rCandidate);
|
|
const sal_uInt32 nCount(aRetval.count());
|
|
|
|
for(sal_uInt32 a(0); a < nCount; a++)
|
|
{
|
|
const B2DPolygon& aCandidate(rCandidate.getB2DPolygon(a));
|
|
const B2VectorOrientation aOrientation(utils::getOrientation(aCandidate));
|
|
sal_uInt32 nDepth(0);
|
|
|
|
for(sal_uInt32 b(0); b < nCount; b++)
|
|
{
|
|
if(b != a)
|
|
{
|
|
const B2DPolygon& aCompare(rCandidate.getB2DPolygon(b));
|
|
|
|
if(utils::isInside(aCompare, aCandidate, true))
|
|
{
|
|
nDepth++;
|
|
}
|
|
}
|
|
}
|
|
|
|
const bool bShallBeHole((nDepth & 0x00000001) == 1);
|
|
const bool bIsHole(aOrientation == B2VectorOrientation::Negative);
|
|
|
|
if(bShallBeHole != bIsHole && aOrientation != B2VectorOrientation::Neutral)
|
|
{
|
|
B2DPolygon aFlipped(aCandidate);
|
|
aFlipped.flip();
|
|
aRetval.setB2DPolygon(a, aFlipped);
|
|
}
|
|
}
|
|
|
|
return aRetval;
|
|
}
|
|
|
|
B2DPolyPolygon correctOutmostPolygon(const B2DPolyPolygon& rCandidate)
|
|
{
|
|
const sal_uInt32 nCount(rCandidate.count());
|
|
|
|
if(nCount > 1)
|
|
{
|
|
for(sal_uInt32 a(0); a < nCount; a++)
|
|
{
|
|
const B2DPolygon& aCandidate(rCandidate.getB2DPolygon(a));
|
|
sal_uInt32 nDepth(0);
|
|
|
|
for(sal_uInt32 b(0); b < nCount; b++)
|
|
{
|
|
if(b != a)
|
|
{
|
|
const B2DPolygon& aCompare(rCandidate.getB2DPolygon(b));
|
|
|
|
if(utils::isInside(aCompare, aCandidate, true))
|
|
{
|
|
nDepth++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(!nDepth)
|
|
{
|
|
B2DPolyPolygon aRetval(rCandidate);
|
|
|
|
if(a != 0)
|
|
{
|
|
// exchange polygon a and polygon 0
|
|
aRetval.setB2DPolygon(0, aCandidate);
|
|
aRetval.setB2DPolygon(a, rCandidate.getB2DPolygon(0));
|
|
}
|
|
|
|
// exit
|
|
return aRetval;
|
|
}
|
|
}
|
|
}
|
|
|
|
return rCandidate;
|
|
}
|
|
|
|
B2DPolyPolygon adaptiveSubdivideByDistance(const B2DPolyPolygon& rCandidate, double fDistanceBound)
|
|
{
|
|
if(rCandidate.areControlPointsUsed())
|
|
{
|
|
B2DPolyPolygon aRetval;
|
|
|
|
for(auto const& rPolygon : rCandidate)
|
|
{
|
|
if(rPolygon.areControlPointsUsed())
|
|
{
|
|
aRetval.append(utils::adaptiveSubdivideByDistance(rPolygon, fDistanceBound));
|
|
}
|
|
else
|
|
{
|
|
aRetval.append(rPolygon);
|
|
}
|
|
}
|
|
|
|
return aRetval;
|
|
}
|
|
else
|
|
{
|
|
return rCandidate;
|
|
}
|
|
}
|
|
|
|
B2DPolyPolygon adaptiveSubdivideByAngle(const B2DPolyPolygon& rCandidate, double fAngleBound)
|
|
{
|
|
if(rCandidate.areControlPointsUsed())
|
|
{
|
|
B2DPolyPolygon aRetval;
|
|
|
|
for(auto const& rPolygon : rCandidate)
|
|
{
|
|
if(rPolygon.areControlPointsUsed())
|
|
{
|
|
aRetval.append(utils::adaptiveSubdivideByAngle(rPolygon, fAngleBound));
|
|
}
|
|
else
|
|
{
|
|
aRetval.append(rPolygon);
|
|
}
|
|
}
|
|
|
|
return aRetval;
|
|
}
|
|
else
|
|
{
|
|
return rCandidate;
|
|
}
|
|
}
|
|
|
|
bool isInside(const B2DPolyPolygon& rCandidate, const B2DPoint& rPoint, bool bWithBorder)
|
|
{
|
|
if(rCandidate.count() == 1)
|
|
{
|
|
return isInside(rCandidate.getB2DPolygon(0), rPoint, bWithBorder);
|
|
}
|
|
else
|
|
{
|
|
sal_Int32 nInsideCount = std::count_if(rCandidate.begin(), rCandidate.end(), [rPoint, bWithBorder](B2DPolygon polygon){ return isInside(polygon, rPoint, bWithBorder); });
|
|
|
|
return (nInsideCount % 2);
|
|
}
|
|
}
|
|
|
|
B2DRange getRange(const B2DPolyPolygon& rCandidate)
|
|
{
|
|
B2DRange aRetval;
|
|
|
|
for(auto const& rPolygon : rCandidate)
|
|
{
|
|
aRetval.expand(utils::getRange(rPolygon));
|
|
}
|
|
|
|
return aRetval;
|
|
}
|
|
|
|
double getSignedArea(const B2DPolyPolygon& rCandidate)
|
|
{
|
|
double fRetval(0.0);
|
|
|
|
for(auto const& rPolygon : rCandidate)
|
|
{
|
|
fRetval += utils::getSignedArea(rPolygon);
|
|
}
|
|
|
|
return fRetval;
|
|
}
|
|
|
|
double getArea(const B2DPolyPolygon& rCandidate)
|
|
{
|
|
return fabs(getSignedArea(rCandidate));
|
|
}
|
|
|
|
void applyLineDashing(const B2DPolyPolygon& rCandidate, const std::vector<double>& rDotDashArray, B2DPolyPolygon* pLineTarget, double fFullDashDotLen)
|
|
{
|
|
if(fFullDashDotLen == 0.0 && !rDotDashArray.empty())
|
|
{
|
|
// calculate fFullDashDotLen from rDotDashArray
|
|
fFullDashDotLen = std::accumulate(rDotDashArray.begin(), rDotDashArray.end(), 0.0);
|
|
}
|
|
|
|
if(!(rCandidate.count() && fFullDashDotLen > 0.0))
|
|
return;
|
|
|
|
B2DPolyPolygon aLineTarget;
|
|
|
|
for(auto const& rPolygon : rCandidate)
|
|
{
|
|
applyLineDashing(
|
|
rPolygon,
|
|
rDotDashArray,
|
|
pLineTarget ? &aLineTarget : nullptr,
|
|
nullptr,
|
|
fFullDashDotLen);
|
|
|
|
if(pLineTarget)
|
|
{
|
|
pLineTarget->append(aLineTarget);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool isInEpsilonRange(const B2DPolyPolygon& rCandidate, const B2DPoint& rTestPosition, double fDistance)
|
|
{
|
|
for(auto const& rPolygon : rCandidate)
|
|
{
|
|
if(isInEpsilonRange(rPolygon, rTestPosition, fDistance))
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
B3DPolyPolygon createB3DPolyPolygonFromB2DPolyPolygon(const B2DPolyPolygon& rCandidate, double fZCoordinate)
|
|
{
|
|
B3DPolyPolygon aRetval;
|
|
|
|
for(auto const& rPolygon : rCandidate)
|
|
{
|
|
aRetval.append(createB3DPolygonFromB2DPolygon(rPolygon, fZCoordinate));
|
|
}
|
|
|
|
return aRetval;
|
|
}
|
|
|
|
B2DPolyPolygon createB2DPolyPolygonFromB3DPolyPolygon(const B3DPolyPolygon& rCandidate, const B3DHomMatrix& rMat)
|
|
{
|
|
B2DPolyPolygon aRetval;
|
|
|
|
for(auto const& rPolygon : rCandidate)
|
|
{
|
|
aRetval.append(createB2DPolygonFromB3DPolygon(rPolygon, rMat));
|
|
}
|
|
|
|
return aRetval;
|
|
}
|
|
|
|
double getSmallestDistancePointToPolyPolygon(const B2DPolyPolygon& rCandidate, const B2DPoint& rTestPoint, sal_uInt32& rPolygonIndex, sal_uInt32& rEdgeIndex, double& rCut)
|
|
{
|
|
double fRetval(DBL_MAX);
|
|
const double fZero(0.0);
|
|
const sal_uInt32 nPolygonCount(rCandidate.count());
|
|
|
|
for(sal_uInt32 a(0); a < nPolygonCount; a++)
|
|
{
|
|
const B2DPolygon& aCandidate(rCandidate.getB2DPolygon(a));
|
|
sal_uInt32 nNewEdgeIndex;
|
|
double fNewCut(0.0);
|
|
const double fNewDistance(getSmallestDistancePointToPolygon(aCandidate, rTestPoint, nNewEdgeIndex, fNewCut));
|
|
|
|
if(fRetval == DBL_MAX || fNewDistance < fRetval)
|
|
{
|
|
fRetval = fNewDistance;
|
|
rPolygonIndex = a;
|
|
rEdgeIndex = nNewEdgeIndex;
|
|
rCut = fNewCut;
|
|
|
|
if(fTools::equal(fRetval, fZero))
|
|
{
|
|
// already found zero distance, cannot get better. Ensure numerical zero value and end loop.
|
|
fRetval = 0.0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return fRetval;
|
|
}
|
|
|
|
B2DPolyPolygon distort(const B2DPolyPolygon& rCandidate, const B2DRange& rOriginal, const B2DPoint& rTopLeft, const B2DPoint& rTopRight, const B2DPoint& rBottomLeft, const B2DPoint& rBottomRight)
|
|
{
|
|
B2DPolyPolygon aRetval;
|
|
|
|
for(auto const& rPolygon : rCandidate)
|
|
{
|
|
aRetval.append(distort(rPolygon, rOriginal, rTopLeft, rTopRight, rBottomLeft, rBottomRight));
|
|
}
|
|
|
|
return aRetval;
|
|
}
|
|
|
|
B2DPolyPolygon expandToCurve(const B2DPolyPolygon& rCandidate)
|
|
{
|
|
B2DPolyPolygon aRetval;
|
|
|
|
for(auto const& rPolygon : rCandidate)
|
|
{
|
|
aRetval.append(expandToCurve(rPolygon));
|
|
}
|
|
|
|
return aRetval;
|
|
}
|
|
|
|
B2DPolyPolygon growInNormalDirection(const B2DPolyPolygon& rCandidate, double fValue)
|
|
{
|
|
if(fValue != 0.0)
|
|
{
|
|
B2DPolyPolygon aRetval;
|
|
|
|
for(auto const& rPolygon : rCandidate)
|
|
{
|
|
aRetval.append(growInNormalDirection(rPolygon, fValue));
|
|
}
|
|
|
|
return aRetval;
|
|
}
|
|
else
|
|
{
|
|
return rCandidate;
|
|
}
|
|
}
|
|
|
|
B2DPolyPolygon reSegmentPolyPolygon(const B2DPolyPolygon& rCandidate, sal_uInt32 nSegments)
|
|
{
|
|
B2DPolyPolygon aRetval;
|
|
|
|
for(auto const& rPolygon : rCandidate)
|
|
{
|
|
aRetval.append(reSegmentPolygon(rPolygon, nSegments));
|
|
}
|
|
|
|
return aRetval;
|
|
}
|
|
|
|
B2DPolyPolygon interpolate(const B2DPolyPolygon& rOld1, const B2DPolyPolygon& rOld2, double t)
|
|
{
|
|
OSL_ENSURE(rOld1.count() == rOld2.count(), "B2DPolyPolygon interpolate: Different geometry (!)");
|
|
B2DPolyPolygon aRetval;
|
|
|
|
for(sal_uInt32 a(0); a < rOld1.count(); a++)
|
|
{
|
|
aRetval.append(interpolate(rOld1.getB2DPolygon(a), rOld2.getB2DPolygon(a), t));
|
|
}
|
|
|
|
return aRetval;
|
|
}
|
|
|
|
bool isRectangle( const B2DPolyPolygon& rPoly )
|
|
{
|
|
// exclude some cheap cases first
|
|
if( rPoly.count() != 1 )
|
|
return false;
|
|
|
|
return isRectangle( rPoly.getB2DPolygon(0) );
|
|
}
|
|
|
|
// #i76891#
|
|
B2DPolyPolygon simplifyCurveSegments(const B2DPolyPolygon& rCandidate)
|
|
{
|
|
if(rCandidate.areControlPointsUsed())
|
|
{
|
|
B2DPolyPolygon aRetval;
|
|
|
|
for(auto const& rPolygon : rCandidate)
|
|
{
|
|
aRetval.append(simplifyCurveSegments(rPolygon));
|
|
}
|
|
|
|
return aRetval;
|
|
}
|
|
else
|
|
{
|
|
return rCandidate;
|
|
}
|
|
}
|
|
|
|
B2DPolyPolygon snapPointsOfHorizontalOrVerticalEdges(const B2DPolyPolygon& rCandidate)
|
|
{
|
|
B2DPolyPolygon aRetval;
|
|
|
|
for(auto const& rPolygon : rCandidate)
|
|
{
|
|
aRetval.append(snapPointsOfHorizontalOrVerticalEdges(rPolygon));
|
|
}
|
|
|
|
return aRetval;
|
|
}
|
|
|
|
B2DPolyPolygon createSevenSegmentPolyPolygon(char nNumber, bool bLitSegments)
|
|
{
|
|
// config here
|
|
// {
|
|
const double fTotalSize=1.0;
|
|
const double fPosMiddleSegment=0.6;
|
|
const double fSegmentEndChopHoriz=0.08;
|
|
const double fSegmentEndChopVert =0.04;
|
|
// }
|
|
// config here
|
|
|
|
const double fLeft=0.0;
|
|
const double fRight=fTotalSize;
|
|
const double fTop=0.0;
|
|
const double fMiddle=fPosMiddleSegment;
|
|
const double fBottom=fTotalSize;
|
|
|
|
// from 0 to 5: pair of segment corner coordinates
|
|
|
|
// segment corner indices are these:
|
|
|
|
// 0 - 1
|
|
// | |
|
|
// 2 - 3
|
|
// | |
|
|
// 4 - 5
|
|
|
|
static const double corners[] =
|
|
{
|
|
fLeft, fTop,
|
|
fRight, fTop,
|
|
fLeft, fMiddle,
|
|
fRight, fMiddle,
|
|
fLeft, fBottom,
|
|
fRight, fBottom
|
|
};
|
|
|
|
// from 0 to 9: which segments are 'lit' for this number?
|
|
|
|
// array denotes graph edges to traverse, with -1 means
|
|
// stop (the vertices are the corner indices from above):
|
|
// 0
|
|
// -
|
|
// 1 | | 2
|
|
// - 3
|
|
// 4 | | 5
|
|
// -
|
|
// 6
|
|
|
|
static const int numbers[] =
|
|
{
|
|
1, 1, 1, 0, 1, 1, 1, // 0
|
|
0, 0, 1, 0, 0, 1, 0, // 1
|
|
1, 0, 1, 1, 1, 0, 1, // 2
|
|
1, 0, 1, 1, 0, 1, 1, // 3
|
|
0, 1, 1, 1, 0, 1, 0, // 4
|
|
1, 1, 0, 1, 0, 1, 1, // 5
|
|
1, 1, 0, 1, 1, 1, 1, // 6
|
|
1, 0, 1, 0, 0, 1, 0, // 1
|
|
1, 1, 1, 1, 1, 1, 1, // 8
|
|
1, 1, 1, 1, 0, 1, 1, // 9
|
|
0, 0, 0, 1, 0, 0, 0, // '-'
|
|
1, 1, 0, 1, 1, 0, 1, // 'E'
|
|
};
|
|
|
|
// maps segment index to two corner ids:
|
|
static const int index2corner[] =
|
|
{
|
|
0, 2, // 0
|
|
0, 4, // 1
|
|
2, 6, // 2
|
|
4, 6, // 3
|
|
4, 8, // 4
|
|
6, 10, // 5
|
|
8, 10, // 6
|
|
};
|
|
|
|
B2DPolyPolygon aRes;
|
|
if( nNumber == '-' )
|
|
{
|
|
nNumber = 10;
|
|
}
|
|
else if( nNumber == 'E' )
|
|
{
|
|
nNumber = 11;
|
|
}
|
|
else if( nNumber == '.' )
|
|
{
|
|
if( bLitSegments )
|
|
aRes.append(createPolygonFromCircle(B2DPoint(fTotalSize/2, fTotalSize),
|
|
fSegmentEndChopHoriz));
|
|
return aRes;
|
|
}
|
|
else
|
|
{
|
|
nNumber=std::clamp<sal_uInt32>(nNumber,'0','9') - '0';
|
|
}
|
|
|
|
B2DPolygon aCurrSegment;
|
|
const size_t sliceSize=SAL_N_ELEMENTS(numbers)/12;
|
|
const int* pCurrSegment=numbers + nNumber*sliceSize;
|
|
for( size_t i=0; i<sliceSize; i++, pCurrSegment++)
|
|
{
|
|
if( !(*pCurrSegment ^ int(bLitSegments)) )
|
|
{
|
|
const size_t j=2*i;
|
|
aCurrSegment.clear();
|
|
B2DPoint start(corners[index2corner[j]],
|
|
corners[index2corner[j]+1] );
|
|
B2DPoint end (corners[index2corner[j+1]],
|
|
corners[index2corner[j+1]+1]);
|
|
|
|
if( rtl::math::approxEqual(start.getX(), end.getX()) )
|
|
{
|
|
start.setY(start.getY()+fSegmentEndChopVert);
|
|
end.setY(end.getY()-fSegmentEndChopVert);
|
|
}
|
|
else
|
|
{
|
|
start.setX(start.getX()+fSegmentEndChopHoriz);
|
|
end.setX(end.getX()-fSegmentEndChopHoriz);
|
|
}
|
|
|
|
aCurrSegment.append(start);
|
|
aCurrSegment.append(end);
|
|
}
|
|
aRes.append(aCurrSegment);
|
|
}
|
|
|
|
return aRes;
|
|
}
|
|
|
|
// converters for css::drawing::PointSequence
|
|
|
|
B2DPolyPolygon UnoPointSequenceSequenceToB2DPolyPolygon(
|
|
const css::drawing::PointSequenceSequence& rPointSequenceSequenceSource)
|
|
{
|
|
B2DPolyPolygon aRetval;
|
|
const css::drawing::PointSequence* pPointSequence = rPointSequenceSequenceSource.getConstArray();
|
|
const css::drawing::PointSequence* pPointSeqEnd = pPointSequence + rPointSequenceSequenceSource.getLength();
|
|
|
|
for(;pPointSequence != pPointSeqEnd; pPointSequence++)
|
|
{
|
|
const B2DPolygon aNewPolygon = UnoPointSequenceToB2DPolygon(*pPointSequence);
|
|
aRetval.append(aNewPolygon);
|
|
}
|
|
|
|
return aRetval;
|
|
}
|
|
|
|
void B2DPolyPolygonToUnoPointSequenceSequence(
|
|
const B2DPolyPolygon& rPolyPolygon,
|
|
css::drawing::PointSequenceSequence& rPointSequenceSequenceRetval)
|
|
{
|
|
const sal_uInt32 nCount(rPolyPolygon.count());
|
|
|
|
if(nCount)
|
|
{
|
|
rPointSequenceSequenceRetval.realloc(nCount);
|
|
css::drawing::PointSequence* pPointSequence = rPointSequenceSequenceRetval.getArray();
|
|
|
|
for(auto const& rPolygon : rPolyPolygon)
|
|
{
|
|
B2DPolygonToUnoPointSequence(rPolygon, *pPointSequence);
|
|
pPointSequence++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
rPointSequenceSequenceRetval.realloc(0);
|
|
}
|
|
}
|
|
|
|
// converters for css::drawing::PolyPolygonBezierCoords (curved polygons)
|
|
|
|
B2DPolyPolygon UnoPolyPolygonBezierCoordsToB2DPolyPolygon(
|
|
const css::drawing::PolyPolygonBezierCoords& rPolyPolygonBezierCoordsSource)
|
|
{
|
|
B2DPolyPolygon aRetval;
|
|
const sal_uInt32 nSequenceCount(static_cast<sal_uInt32>(rPolyPolygonBezierCoordsSource.Coordinates.getLength()));
|
|
|
|
if(nSequenceCount)
|
|
{
|
|
OSL_ENSURE(nSequenceCount == static_cast<sal_uInt32>(rPolyPolygonBezierCoordsSource.Flags.getLength()),
|
|
"UnoPolyPolygonBezierCoordsToB2DPolyPolygon: unequal number of Points and Flags (!)");
|
|
const css::drawing::PointSequence* pPointSequence = rPolyPolygonBezierCoordsSource.Coordinates.getConstArray();
|
|
const css::drawing::FlagSequence* pFlagSequence = rPolyPolygonBezierCoordsSource.Flags.getConstArray();
|
|
|
|
for(sal_uInt32 a(0); a < nSequenceCount; a++)
|
|
{
|
|
const B2DPolygon aNewPolygon(UnoPolygonBezierCoordsToB2DPolygon(
|
|
*pPointSequence,
|
|
*pFlagSequence));
|
|
|
|
pPointSequence++;
|
|
pFlagSequence++;
|
|
aRetval.append(aNewPolygon);
|
|
}
|
|
}
|
|
|
|
return aRetval;
|
|
}
|
|
|
|
void B2DPolyPolygonToUnoPolyPolygonBezierCoords(
|
|
const B2DPolyPolygon& rPolyPolygon,
|
|
css::drawing::PolyPolygonBezierCoords& rPolyPolygonBezierCoordsRetval)
|
|
{
|
|
const sal_uInt32 nCount(rPolyPolygon.count());
|
|
|
|
if(nCount)
|
|
{
|
|
// prepare return value memory
|
|
rPolyPolygonBezierCoordsRetval.Coordinates.realloc(static_cast<sal_Int32>(nCount));
|
|
rPolyPolygonBezierCoordsRetval.Flags.realloc(static_cast<sal_Int32>(nCount));
|
|
|
|
// get pointers to arrays
|
|
css::drawing::PointSequence* pPointSequence = rPolyPolygonBezierCoordsRetval.Coordinates.getArray();
|
|
css::drawing::FlagSequence* pFlagSequence = rPolyPolygonBezierCoordsRetval.Flags.getArray();
|
|
|
|
for(auto const& rSource : rPolyPolygon)
|
|
{
|
|
B2DPolygonToUnoPolygonBezierCoords(
|
|
rSource,
|
|
*pPointSequence,
|
|
*pFlagSequence);
|
|
pPointSequence++;
|
|
pFlagSequence++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
rPolyPolygonBezierCoordsRetval.Coordinates.realloc(0);
|
|
rPolyPolygonBezierCoordsRetval.Flags.realloc(0);
|
|
}
|
|
}
|
|
|
|
} // end of namespace
|
|
|
|
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|