office-gobmx/drawinglayer/source/primitive3d/sdrextrudeprimitive3d.cxx
Noel Grandin 21dbf18064 clang-tidy:readability-redundant-member-init
Change-Id: I95918275653714577e2d6728dd3947c7fbb66d8f
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/121360
Tested-by: Jenkins
Reviewed-by: Noel Grandin <noel.grandin@collabora.co.uk>
2021-08-31 14:30:43 +02:00

502 lines
24 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sal/config.h>
#include <cmath>
#include <drawinglayer/primitive3d/sdrextrudeprimitive3d.hxx>
#include <basegfx/matrix/b2dhommatrix.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <primitive3d/sdrdecompositiontools3d.hxx>
#include <drawinglayer/primitive3d/drawinglayer_primitivetypes3d.hxx>
#include <drawinglayer/geometry/viewinformation3d.hxx>
#include <drawinglayer/attribute/sdrfillattribute.hxx>
#include <drawinglayer/attribute/sdrlineattribute.hxx>
#include <drawinglayer/attribute/sdrshadowattribute.hxx>
using namespace com::sun::star;
namespace drawinglayer::primitive3d
{
Primitive3DContainer SdrExtrudePrimitive3D::create3DDecomposition(const geometry::ViewInformation3D& rViewInformation) const
{
Primitive3DContainer aRetval;
// get slices
const Slice3DVector& rSliceVector = getSlices();
if(!rSliceVector.empty())
{
sal_uInt32 a;
// decide what to create
const css::drawing::NormalsKind eNormalsKind(getSdr3DObjectAttribute().getNormalsKind());
const bool bCreateNormals(css::drawing::NormalsKind_SPECIFIC == eNormalsKind);
const bool bCreateTextureCoordinatesX(css::drawing::TextureProjectionMode_OBJECTSPECIFIC == getSdr3DObjectAttribute().getTextureProjectionX());
const bool bCreateTextureCoordinatesY(css::drawing::TextureProjectionMode_OBJECTSPECIFIC == getSdr3DObjectAttribute().getTextureProjectionY());
basegfx::B2DHomMatrix aTexTransform;
if(!getSdrLFSAttribute().getFill().isDefault() && (bCreateTextureCoordinatesX || bCreateTextureCoordinatesY))
{
const basegfx::B2DPolygon aFirstPolygon(maCorrectedPolyPolygon.getB2DPolygon(0));
const double fFrontLength(basegfx::utils::getLength(aFirstPolygon));
const double fFrontArea(basegfx::utils::getArea(aFirstPolygon));
const double fSqrtFrontArea(sqrt(fFrontArea));
double fRelativeTextureWidth = basegfx::fTools::equalZero(fSqrtFrontArea) ? 1.0 : fFrontLength / fSqrtFrontArea;
fRelativeTextureWidth = std::trunc(fRelativeTextureWidth - 0.5);
if(fRelativeTextureWidth < 1.0)
{
fRelativeTextureWidth = 1.0;
}
aTexTransform.translate(-0.5, -0.5);
aTexTransform.scale(-1.0, -1.0);
aTexTransform.translate(0.5, 0.5);
aTexTransform.scale(fRelativeTextureWidth, 1.0);
}
// create geometry
std::vector< basegfx::B3DPolyPolygon > aFill;
extractPlanesFromSlice(aFill, rSliceVector,
bCreateNormals, getSmoothNormals(), getSmoothLids(), false,
0.5, 0.6, bCreateTextureCoordinatesX || bCreateTextureCoordinatesY, aTexTransform);
// get full range
const basegfx::B3DRange aRange(getRangeFrom3DGeometry(aFill));
// normal creation
if(!getSdrLFSAttribute().getFill().isDefault())
{
if(css::drawing::NormalsKind_SPHERE == eNormalsKind)
{
applyNormalsKindSphereTo3DGeometry(aFill, aRange);
}
else if(css::drawing::NormalsKind_FLAT == eNormalsKind)
{
applyNormalsKindFlatTo3DGeometry(aFill);
}
if(getSdr3DObjectAttribute().getNormalsInvert())
{
applyNormalsInvertTo3DGeometry(aFill);
}
}
// texture coordinates
if(!getSdrLFSAttribute().getFill().isDefault())
{
applyTextureTo3DGeometry(
getSdr3DObjectAttribute().getTextureProjectionX(),
getSdr3DObjectAttribute().getTextureProjectionY(),
aFill,
aRange,
getTextureSize());
}
if(!getSdrLFSAttribute().getFill().isDefault())
{
// add fill
aRetval = create3DPolyPolygonFillPrimitives(
aFill,
getTransform(),
getTextureSize(),
getSdr3DObjectAttribute(),
getSdrLFSAttribute().getFill(),
getSdrLFSAttribute().getFillFloatTransGradient());
}
else
{
// create simplified 3d hit test geometry
aRetval = createHiddenGeometryPrimitives3D(
aFill,
getTransform(),
getTextureSize(),
getSdr3DObjectAttribute());
}
// add line
if(!getSdrLFSAttribute().getLine().isDefault())
{
if(getSdr3DObjectAttribute().getReducedLineGeometry())
{
// create geometric outlines with reduced line geometry for chart.
const basegfx::B3DPolyPolygon aVerLine(extractVerticalLinesFromSlice(rSliceVector));
const sal_uInt32 nCount(aVerLine.count());
basegfx::B3DPolyPolygon aReducedLoops;
basegfx::B3DPolyPolygon aNewLineGeometry;
// sort out doubles (front and back planes when no edge rounding is done). Since
// this is a line geometry merged from PolyPolygons, loop over all Polygons
for(a = 0; a < nCount; a++)
{
const sal_uInt32 nReducedCount(aReducedLoops.count());
const basegfx::B3DPolygon& aCandidate(aVerLine.getB3DPolygon(a));
bool bAdd(true);
if(nReducedCount)
{
for(sal_uInt32 b(0); bAdd && b < nReducedCount; b++)
{
if(aCandidate == aReducedLoops.getB3DPolygon(b))
{
bAdd = false;
}
}
}
if(bAdd)
{
aReducedLoops.append(aCandidate);
}
}
// from here work with reduced loops and reduced count without changing them
const sal_uInt32 nReducedCount(aReducedLoops.count());
if(nReducedCount > 1)
{
for(sal_uInt32 b(1); b < nReducedCount; b++)
{
// get loop pair
const basegfx::B3DPolygon& aCandA(aReducedLoops.getB3DPolygon(b - 1));
const basegfx::B3DPolygon& aCandB(aReducedLoops.getB3DPolygon(b));
// for each loop pair create the connection edges
createReducedOutlines(
rViewInformation,
getTransform(),
aCandA,
aCandB,
aNewLineGeometry);
}
}
// add reduced loops themselves
aNewLineGeometry.append(aReducedLoops);
// to create vertical edges at non-C1/C2 steady loops, use maCorrectedPolyPolygon
// directly since the 3D Polygons do not support this.
//
// Unfortunately there is no bezier polygon provided by the chart module; one reason is
// that the API for extrude wants a 3D polygon geometry (for historical reasons, i guess)
// and those have no beziers. Another reason is that he chart module uses self-created
// stuff to create the 2D geometry (in ShapeFactory::createPieSegment), but this geometry
// does not contain bezier infos, either. The only way which is possible for now is to 'detect'
// candidates for vertical edges of pie segments by looking for the angles in the polygon.
//
// This is all not very well designed ATM. Ideally, the ReducedLineGeometry is responsible
// for creating the outer geometry edges (createReducedOutlines), but for special edges
// like the vertical ones for pie center and both start/end, the incarnation with the
// knowledge about that it needs to create those and IS a pie segment -> in this case,
// the chart itself.
const sal_uInt32 nPolyCount(maCorrectedPolyPolygon.count());
for(sal_uInt32 c(0); c < nPolyCount; c++)
{
const basegfx::B2DPolygon aCandidate(maCorrectedPolyPolygon.getB2DPolygon(c));
const sal_uInt32 nPointCount(aCandidate.count());
if(nPointCount > 2)
{
sal_uInt32 nIndexA(nPointCount);
sal_uInt32 nIndexB(nPointCount);
sal_uInt32 nIndexC(nPointCount);
for(sal_uInt32 d(0); d < nPointCount; d++)
{
const sal_uInt32 nPrevInd((d + nPointCount - 1) % nPointCount);
const sal_uInt32 nNextInd((d + 1) % nPointCount);
const basegfx::B2DPoint aPoint(aCandidate.getB2DPoint(d));
const basegfx::B2DVector aPrev(aCandidate.getB2DPoint(nPrevInd) - aPoint);
const basegfx::B2DVector aNext(aCandidate.getB2DPoint(nNextInd) - aPoint);
const double fAngle(aPrev.angle(aNext));
// take each angle which deviates more than 10% from going straight as
// special edge. This will detect the two outer edges of pie segments,
// but not always the center one (think about a near 180 degree pie)
if(F_PI - fabs(fAngle) > F_PI * 0.1)
{
if(nPointCount == nIndexA)
{
nIndexA = d;
}
else if(nPointCount == nIndexB)
{
nIndexB = d;
}
else if(nPointCount == nIndexC)
{
nIndexC = d;
d = nPointCount;
}
}
}
const bool bIndexAUsed(nIndexA != nPointCount);
const bool bIndexBUsed(nIndexB != nPointCount);
bool bIndexCUsed(nIndexC != nPointCount);
if(bIndexCUsed)
{
// already three special edges found, so the center one was already detected
// and does not need to be searched
}
else if(bIndexAUsed && bIndexBUsed)
{
// outer edges detected (they are approx. 90 degrees), but center one not.
// Look with the knowledge that it's in-between the two found ones
if(((nIndexA + 2) % nPointCount) == nIndexB)
{
nIndexC = (nIndexA + 1) % nPointCount;
}
else if(((nIndexA + nPointCount - 2) % nPointCount) == nIndexB)
{
nIndexC = (nIndexA + nPointCount - 1) % nPointCount;
}
bIndexCUsed = (nIndexC != nPointCount);
}
if(bIndexAUsed)
{
const basegfx::B2DPoint aPoint(aCandidate.getB2DPoint(nIndexA));
const basegfx::B3DPoint aStart(aPoint.getX(), aPoint.getY(), 0.0);
const basegfx::B3DPoint aEnd(aPoint.getX(), aPoint.getY(), getDepth());
basegfx::B3DPolygon aToBeAdded;
aToBeAdded.append(aStart);
aToBeAdded.append(aEnd);
aNewLineGeometry.append(aToBeAdded);
}
if(bIndexBUsed)
{
const basegfx::B2DPoint aPoint(aCandidate.getB2DPoint(nIndexB));
const basegfx::B3DPoint aStart(aPoint.getX(), aPoint.getY(), 0.0);
const basegfx::B3DPoint aEnd(aPoint.getX(), aPoint.getY(), getDepth());
basegfx::B3DPolygon aToBeAdded;
aToBeAdded.append(aStart);
aToBeAdded.append(aEnd);
aNewLineGeometry.append(aToBeAdded);
}
if(bIndexCUsed)
{
const basegfx::B2DPoint aPoint(aCandidate.getB2DPoint(nIndexC));
const basegfx::B3DPoint aStart(aPoint.getX(), aPoint.getY(), 0.0);
const basegfx::B3DPoint aEnd(aPoint.getX(), aPoint.getY(), getDepth());
basegfx::B3DPolygon aToBeAdded;
aToBeAdded.append(aStart);
aToBeAdded.append(aEnd);
aNewLineGeometry.append(aToBeAdded);
}
}
}
// append loops themselves
aNewLineGeometry.append(aReducedLoops);
if(aNewLineGeometry.count())
{
const Primitive3DContainer aLines(create3DPolyPolygonLinePrimitives(
aNewLineGeometry, getTransform(), getSdrLFSAttribute().getLine()));
aRetval.append(aLines);
}
}
else
{
// extract line geometry from slices
const basegfx::B3DPolyPolygon aHorLine(extractHorizontalLinesFromSlice(rSliceVector, false));
const basegfx::B3DPolyPolygon aVerLine(extractVerticalLinesFromSlice(rSliceVector));
// add horizontal lines
const Primitive3DContainer aHorLines(create3DPolyPolygonLinePrimitives(
aHorLine, getTransform(), getSdrLFSAttribute().getLine()));
aRetval.append(aHorLines);
// add vertical lines
const Primitive3DContainer aVerLines(create3DPolyPolygonLinePrimitives(
aVerLine, getTransform(), getSdrLFSAttribute().getLine()));
aRetval.append(aVerLines);
}
}
// add shadow
if(!getSdrLFSAttribute().getShadow().isDefault() && !aRetval.empty())
{
const Primitive3DContainer aShadow(createShadowPrimitive3D(
aRetval, getSdrLFSAttribute().getShadow(), getSdr3DObjectAttribute().getShadow3D()));
aRetval.append(aShadow);
}
}
return aRetval;
}
void SdrExtrudePrimitive3D::impCreateSlices()
{
// prepare the polygon. No double points, correct orientations and a correct
// outmost polygon are needed
// Also important: subdivide here to ensure equal point count for all slices (!)
maCorrectedPolyPolygon = basegfx::utils::adaptiveSubdivideByAngle(getPolyPolygon());
maCorrectedPolyPolygon.removeDoublePoints();
maCorrectedPolyPolygon = basegfx::utils::correctOrientations(maCorrectedPolyPolygon);
maCorrectedPolyPolygon = basegfx::utils::correctOutmostPolygon(maCorrectedPolyPolygon);
// prepare slices as geometry
createExtrudeSlices(maSlices, maCorrectedPolyPolygon, getBackScale(), getDiagonal(), getDepth(), getCharacterMode(), getCloseFront(), getCloseBack());
}
const Slice3DVector& SdrExtrudePrimitive3D::getSlices() const
{
// This can be made dependent of getSdrLFSAttribute().getFill() and getSdrLFSAttribute().getLine()
// again when no longer geometry is needed for non-visible 3D objects as it is now for chart
if(getPolyPolygon().count() && maSlices.empty())
{
::osl::MutexGuard aGuard( m_aMutex );
const_cast< SdrExtrudePrimitive3D& >(*this).impCreateSlices();
}
return maSlices;
}
SdrExtrudePrimitive3D::SdrExtrudePrimitive3D(
const basegfx::B3DHomMatrix& rTransform,
const basegfx::B2DVector& rTextureSize,
const attribute::SdrLineFillShadowAttribute3D& rSdrLFSAttribute,
const attribute::Sdr3DObjectAttribute& rSdr3DObjectAttribute,
const basegfx::B2DPolyPolygon& rPolyPolygon,
double fDepth,
double fDiagonal,
double fBackScale,
bool bSmoothNormals,
bool bSmoothLids,
bool bCharacterMode,
bool bCloseFront,
bool bCloseBack)
: SdrPrimitive3D(rTransform, rTextureSize, rSdrLFSAttribute, rSdr3DObjectAttribute),
maPolyPolygon(rPolyPolygon),
mfDepth(fDepth),
mfDiagonal(fDiagonal),
mfBackScale(fBackScale),
mbSmoothNormals(bSmoothNormals),
mbSmoothLids(bSmoothLids),
mbCharacterMode(bCharacterMode),
mbCloseFront(bCloseFront),
mbCloseBack(bCloseBack)
{
// make sure depth is positive
if(basegfx::fTools::lessOrEqual(getDepth(), 0.0))
{
mfDepth = 0.0;
}
// make sure the percentage value getDiagonal() is between 0.0 and 1.0
if(basegfx::fTools::lessOrEqual(getDiagonal(), 0.0))
{
mfDiagonal = 0.0;
}
else if(basegfx::fTools::moreOrEqual(getDiagonal(), 1.0))
{
mfDiagonal = 1.0;
}
// no close front/back when polygon is not closed
if(getPolyPolygon().count() && !getPolyPolygon().getB2DPolygon(0).isClosed())
{
mbCloseFront = mbCloseBack = false;
}
// no edge rounding when not closing
if(!getCloseFront() && !getCloseBack())
{
mfDiagonal = 0.0;
}
}
SdrExtrudePrimitive3D::~SdrExtrudePrimitive3D()
{
}
bool SdrExtrudePrimitive3D::operator==(const BasePrimitive3D& rPrimitive) const
{
if(SdrPrimitive3D::operator==(rPrimitive))
{
const SdrExtrudePrimitive3D& rCompare = static_cast< const SdrExtrudePrimitive3D& >(rPrimitive);
return (getPolyPolygon() == rCompare.getPolyPolygon()
&& getDepth() == rCompare.getDepth()
&& getDiagonal() == rCompare.getDiagonal()
&& getBackScale() == rCompare.getBackScale()
&& getSmoothNormals() == rCompare.getSmoothNormals()
&& getSmoothLids() == rCompare.getSmoothLids()
&& getCharacterMode() == rCompare.getCharacterMode()
&& getCloseFront() == rCompare.getCloseFront()
&& getCloseBack() == rCompare.getCloseBack());
}
return false;
}
basegfx::B3DRange SdrExtrudePrimitive3D::getB3DRange(const geometry::ViewInformation3D& /*rViewInformation*/) const
{
// use default from sdrPrimitive3D which uses transformation expanded by line width/2
// The parent implementation which uses the ranges of the decomposition would be more
// correct, but for historical reasons it is necessary to do the old method: To get
// the range of the non-transformed geometry and transform it then. This leads to different
// ranges where the new method is more correct, but the need to keep the old behaviour
// has priority here.
return get3DRangeFromSlices(getSlices());
}
Primitive3DContainer SdrExtrudePrimitive3D::get3DDecomposition(const geometry::ViewInformation3D& rViewInformation) const
{
if(getSdr3DObjectAttribute().getReducedLineGeometry())
{
if(!mpLastRLGViewInformation ||
(!getBuffered3DDecomposition().empty()
&& *mpLastRLGViewInformation != rViewInformation))
{
::osl::MutexGuard aGuard( m_aMutex );
// conditions of last local decomposition with reduced lines have changed. Remember
// new one and clear current decompositiopn
SdrExtrudePrimitive3D* pThat = const_cast< SdrExtrudePrimitive3D* >(this);
pThat->setBuffered3DDecomposition(Primitive3DContainer());
pThat->mpLastRLGViewInformation = rViewInformation;
}
}
// no test for buffering needed, call parent
return SdrPrimitive3D::get3DDecomposition(rViewInformation);
}
// provide unique ID
ImplPrimitive3DIDBlock(SdrExtrudePrimitive3D, PRIMITIVE3D_ID_SDREXTRUDEPRIMITIVE3D)
} // end of namespace
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */