18715f6a63
If we are not going to manipulate the resulting vector, then it is actually slower, since we have to allocate more storage for the vector Change-Id: I65677007d105f4783603df74113ebed6db0b551b Reviewed-on: https://gerrit.libreoffice.org/c/core/+/133963 Tested-by: Jenkins Reviewed-by: Noel Grandin <noel.grandin@collabora.co.uk>
365 lines
12 KiB
C++
365 lines
12 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/*
|
|
* This file is part of the LibreOffice project.
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
* This file incorporates work covered by the following license notice:
|
|
*
|
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed
|
|
* with this work for additional information regarding copyright
|
|
* ownership. The ASF licenses this file to you under the Apache
|
|
* License, Version 2.0 (the "License"); you may not use this file
|
|
* except in compliance with the License. You may obtain a copy of
|
|
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
|
|
*/
|
|
|
|
#include <CoinMP.h>
|
|
#include <CoinError.hpp>
|
|
|
|
#include "SolverComponent.hxx"
|
|
#include <strings.hrc>
|
|
|
|
#include <com/sun/star/frame/XModel.hpp>
|
|
#include <com/sun/star/table/CellAddress.hpp>
|
|
|
|
#include <rtl/math.hxx>
|
|
#include <stdexcept>
|
|
#include <vector>
|
|
#include <float.h>
|
|
|
|
namespace com::sun::star::uno { class XComponentContext; }
|
|
|
|
using namespace com::sun::star;
|
|
|
|
namespace {
|
|
|
|
class CoinMPSolver : public SolverComponent
|
|
{
|
|
public:
|
|
CoinMPSolver() {}
|
|
|
|
private:
|
|
virtual void SAL_CALL solve() override;
|
|
virtual OUString SAL_CALL getImplementationName() override
|
|
{
|
|
return "com.sun.star.comp.Calc.CoinMPSolver";
|
|
}
|
|
virtual OUString SAL_CALL getComponentDescription() override
|
|
{
|
|
return SolverComponent::GetResourceString( RID_COINMP_SOLVER_COMPONENT );
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
void SAL_CALL CoinMPSolver::solve()
|
|
{
|
|
uno::Reference<frame::XModel> xModel( mxDoc, uno::UNO_QUERY_THROW );
|
|
|
|
maStatus.clear();
|
|
mbSuccess = false;
|
|
|
|
xModel->lockControllers();
|
|
|
|
// collect variables in vector (?)
|
|
|
|
const auto & aVariableCells = maVariables;
|
|
size_t nVariables = aVariableCells.size();
|
|
size_t nVar = 0;
|
|
|
|
// collect all dependent cells
|
|
|
|
ScSolverCellHashMap aCellsHash;
|
|
aCellsHash[maObjective].reserve( nVariables + 1 ); // objective function
|
|
|
|
for (const auto& rConstr : std::as_const(maConstraints))
|
|
{
|
|
table::CellAddress aCellAddr = rConstr.Left;
|
|
aCellsHash[aCellAddr].reserve( nVariables + 1 ); // constraints: left hand side
|
|
|
|
if ( rConstr.Right >>= aCellAddr )
|
|
aCellsHash[aCellAddr].reserve( nVariables + 1 ); // constraints: right hand side
|
|
}
|
|
|
|
// set all variables to zero
|
|
//! store old values?
|
|
//! use old values as initial values?
|
|
for ( const auto& rVarCell : aVariableCells )
|
|
{
|
|
SolverComponent::SetValue( mxDoc, rVarCell, 0.0 );
|
|
}
|
|
|
|
// read initial values from all dependent cells
|
|
for ( auto& rEntry : aCellsHash )
|
|
{
|
|
double fValue = SolverComponent::GetValue( mxDoc, rEntry.first );
|
|
rEntry.second.push_back( fValue ); // store as first element, as-is
|
|
}
|
|
|
|
// loop through variables
|
|
for ( const auto& rVarCell : aVariableCells )
|
|
{
|
|
SolverComponent::SetValue( mxDoc, rVarCell, 1.0 ); // set to 1 to examine influence
|
|
|
|
// read value change from all dependent cells
|
|
for ( auto& rEntry : aCellsHash )
|
|
{
|
|
double fChanged = SolverComponent::GetValue( mxDoc, rEntry.first );
|
|
double fInitial = rEntry.second.front();
|
|
rEntry.second.push_back( fChanged - fInitial );
|
|
}
|
|
|
|
SolverComponent::SetValue( mxDoc, rVarCell, 2.0 ); // minimal test for linearity
|
|
|
|
for ( const auto& rEntry : aCellsHash )
|
|
{
|
|
double fInitial = rEntry.second.front();
|
|
double fCoeff = rEntry.second.back(); // last appended: coefficient for this variable
|
|
double fTwo = SolverComponent::GetValue( mxDoc, rEntry.first );
|
|
|
|
bool bLinear = rtl::math::approxEqual( fTwo, fInitial + 2.0 * fCoeff ) ||
|
|
rtl::math::approxEqual( fInitial, fTwo - 2.0 * fCoeff );
|
|
// second comparison is needed in case fTwo is zero
|
|
if ( !bLinear )
|
|
maStatus = SolverComponent::GetResourceString( RID_ERROR_NONLINEAR );
|
|
}
|
|
|
|
SolverComponent::SetValue( mxDoc, rVarCell, 0.0 ); // set back to zero for examining next variable
|
|
}
|
|
|
|
xModel->unlockControllers();
|
|
|
|
if ( !maStatus.isEmpty() )
|
|
return;
|
|
|
|
//
|
|
// build parameter arrays for CoinMP
|
|
//
|
|
|
|
// set objective function
|
|
|
|
const std::vector<double>& rObjCoeff = aCellsHash[maObjective];
|
|
std::unique_ptr<double[]> pObjectCoeffs(new double[nVariables]);
|
|
for (nVar=0; nVar<nVariables; nVar++)
|
|
pObjectCoeffs[nVar] = rObjCoeff[nVar+1];
|
|
double nObjectConst = rObjCoeff[0]; // constant term of objective
|
|
|
|
// add rows
|
|
|
|
size_t nRows = maConstraints.getLength();
|
|
size_t nCompSize = nVariables * nRows;
|
|
std::unique_ptr<double[]> pCompMatrix(new double[nCompSize]); // first collect all coefficients, row-wise
|
|
for (size_t i=0; i<nCompSize; i++)
|
|
pCompMatrix[i] = 0.0;
|
|
|
|
std::unique_ptr<double[]> pRHS(new double[nRows]);
|
|
std::unique_ptr<char[]> pRowType(new char[nRows]);
|
|
for (size_t i=0; i<nRows; i++)
|
|
{
|
|
pRHS[i] = 0.0;
|
|
pRowType[i] = 'N';
|
|
}
|
|
|
|
for (sal_Int32 nConstrPos = 0; nConstrPos < maConstraints.getLength(); ++nConstrPos)
|
|
{
|
|
// integer constraints are set later
|
|
sheet::SolverConstraintOperator eOp = maConstraints[nConstrPos].Operator;
|
|
if ( eOp == sheet::SolverConstraintOperator_LESS_EQUAL ||
|
|
eOp == sheet::SolverConstraintOperator_GREATER_EQUAL ||
|
|
eOp == sheet::SolverConstraintOperator_EQUAL )
|
|
{
|
|
double fDirectValue = 0.0;
|
|
bool bRightCell = false;
|
|
table::CellAddress aRightAddr;
|
|
const uno::Any& rRightAny = maConstraints[nConstrPos].Right;
|
|
if ( rRightAny >>= aRightAddr )
|
|
bRightCell = true; // cell specified as right-hand side
|
|
else
|
|
rRightAny >>= fDirectValue; // constant value
|
|
|
|
table::CellAddress aLeftAddr = maConstraints[nConstrPos].Left;
|
|
|
|
const std::vector<double>& rLeftCoeff = aCellsHash[aLeftAddr];
|
|
double* pValues = &pCompMatrix[nConstrPos * nVariables];
|
|
for (nVar=0; nVar<nVariables; nVar++)
|
|
pValues[nVar] = rLeftCoeff[nVar+1];
|
|
|
|
// if left hand cell has a constant term, put into rhs value
|
|
double fRightValue = -rLeftCoeff[0];
|
|
|
|
if ( bRightCell )
|
|
{
|
|
const std::vector<double>& rRightCoeff = aCellsHash[aRightAddr];
|
|
// modify pValues with rhs coefficients
|
|
for (nVar=0; nVar<nVariables; nVar++)
|
|
pValues[nVar] -= rRightCoeff[nVar+1];
|
|
|
|
fRightValue += rRightCoeff[0]; // constant term
|
|
}
|
|
else
|
|
fRightValue += fDirectValue;
|
|
|
|
switch ( eOp )
|
|
{
|
|
case sheet::SolverConstraintOperator_LESS_EQUAL: pRowType[nConstrPos] = 'L'; break;
|
|
case sheet::SolverConstraintOperator_GREATER_EQUAL: pRowType[nConstrPos] = 'G'; break;
|
|
case sheet::SolverConstraintOperator_EQUAL: pRowType[nConstrPos] = 'E'; break;
|
|
default:
|
|
OSL_ENSURE( false, "unexpected enum type" );
|
|
}
|
|
pRHS[nConstrPos] = fRightValue;
|
|
}
|
|
}
|
|
|
|
// Find non-zero coefficients, column-wise
|
|
|
|
std::unique_ptr<int[]> pMatrixBegin(new int[nVariables+1]);
|
|
std::unique_ptr<int[]> pMatrixCount(new int[nVariables]);
|
|
std::unique_ptr<double[]> pMatrix(new double[nCompSize]); // not always completely used
|
|
std::unique_ptr<int[]> pMatrixIndex(new int[nCompSize]);
|
|
int nMatrixPos = 0;
|
|
for (nVar=0; nVar<nVariables; nVar++)
|
|
{
|
|
int nBegin = nMatrixPos;
|
|
for (size_t nRow=0; nRow<nRows; nRow++)
|
|
{
|
|
double fCoeff = pCompMatrix[ nRow * nVariables + nVar ]; // row-wise
|
|
if ( fCoeff != 0.0 )
|
|
{
|
|
pMatrix[nMatrixPos] = fCoeff;
|
|
pMatrixIndex[nMatrixPos] = nRow;
|
|
++nMatrixPos;
|
|
}
|
|
}
|
|
pMatrixBegin[nVar] = nBegin;
|
|
pMatrixCount[nVar] = nMatrixPos - nBegin;
|
|
}
|
|
pMatrixBegin[nVariables] = nMatrixPos;
|
|
pCompMatrix.reset();
|
|
|
|
// apply settings to all variables
|
|
|
|
std::unique_ptr<double[]> pLowerBounds(new double[nVariables]);
|
|
std::unique_ptr<double[]> pUpperBounds(new double[nVariables]);
|
|
for (nVar=0; nVar<nVariables; nVar++)
|
|
{
|
|
pLowerBounds[nVar] = mbNonNegative ? 0.0 : -DBL_MAX;
|
|
pUpperBounds[nVar] = DBL_MAX;
|
|
|
|
// bounds could possibly be further restricted from single-cell constraints
|
|
}
|
|
|
|
std::unique_ptr<char[]> pColType(new char[nVariables]);
|
|
for (nVar=0; nVar<nVariables; nVar++)
|
|
pColType[nVar] = mbInteger ? 'I' : 'C';
|
|
|
|
// apply single-var integer constraints
|
|
|
|
for (const auto& rConstr : std::as_const(maConstraints))
|
|
{
|
|
sheet::SolverConstraintOperator eOp = rConstr.Operator;
|
|
if ( eOp == sheet::SolverConstraintOperator_INTEGER ||
|
|
eOp == sheet::SolverConstraintOperator_BINARY )
|
|
{
|
|
table::CellAddress aLeftAddr = rConstr.Left;
|
|
// find variable index for cell
|
|
for (nVar=0; nVar<nVariables; nVar++)
|
|
if ( AddressEqual( aVariableCells[nVar], aLeftAddr ) )
|
|
{
|
|
if ( eOp == sheet::SolverConstraintOperator_INTEGER )
|
|
pColType[nVar] = 'I';
|
|
else
|
|
{
|
|
pColType[nVar] = 'B';
|
|
pLowerBounds[nVar] = 0.0;
|
|
pUpperBounds[nVar] = 1.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int nObjectSense = mbMaximize ? SOLV_OBJSENS_MAX : SOLV_OBJSENS_MIN;
|
|
|
|
HPROB hProb = CoinCreateProblem("");
|
|
int nResult = CoinLoadProblem( hProb, nVariables, nRows, nMatrixPos, 0,
|
|
nObjectSense, nObjectConst, pObjectCoeffs.get(),
|
|
pLowerBounds.get(), pUpperBounds.get(), pRowType.get(), pRHS.get(), nullptr,
|
|
pMatrixBegin.get(), pMatrixCount.get(), pMatrixIndex.get(), pMatrix.get(),
|
|
nullptr, nullptr, nullptr );
|
|
if (nResult == SOLV_CALL_SUCCESS)
|
|
{
|
|
nResult = CoinLoadInteger( hProb, pColType.get() );
|
|
}
|
|
|
|
pColType.reset();
|
|
pMatrixIndex.reset();
|
|
pMatrix.reset();
|
|
pMatrixCount.reset();
|
|
pMatrixBegin.reset();
|
|
pUpperBounds.reset();
|
|
pLowerBounds.reset();
|
|
pRowType.reset();
|
|
pRHS.reset();
|
|
pObjectCoeffs.reset();
|
|
|
|
CoinSetRealOption( hProb, COIN_REAL_MAXSECONDS, mnTimeout );
|
|
CoinSetRealOption( hProb, COIN_REAL_MIPMAXSEC, mnTimeout );
|
|
|
|
// TODO: handle (or remove) settings: epsilon, B&B depth
|
|
|
|
// solve model
|
|
|
|
if (nResult == SOLV_CALL_SUCCESS)
|
|
{
|
|
nResult = CoinCheckProblem( hProb );
|
|
}
|
|
|
|
if (nResult == SOLV_CALL_SUCCESS)
|
|
{
|
|
try
|
|
{
|
|
nResult = CoinOptimizeProblem( hProb, 0 );
|
|
}
|
|
catch (const CoinError& e)
|
|
{
|
|
CoinUnloadProblem(hProb);
|
|
throw std::runtime_error(e.message());
|
|
}
|
|
}
|
|
|
|
mbSuccess = ( nResult == SOLV_CALL_SUCCESS );
|
|
if ( mbSuccess )
|
|
{
|
|
// get solution
|
|
|
|
maSolution.realloc( nVariables );
|
|
CoinGetSolutionValues( hProb, maSolution.getArray(), nullptr, nullptr, nullptr );
|
|
mfResultValue = CoinGetObjectValue( hProb );
|
|
}
|
|
else
|
|
{
|
|
int nSolutionStatus = CoinGetSolutionStatus( hProb );
|
|
if ( nSolutionStatus == 1 )
|
|
maStatus = SolverComponent::GetResourceString( RID_ERROR_INFEASIBLE );
|
|
else if ( nSolutionStatus == 2 )
|
|
maStatus = SolverComponent::GetResourceString( RID_ERROR_UNBOUNDED );
|
|
// TODO: detect timeout condition and report as RID_ERROR_TIMEOUT
|
|
// (currently reported as infeasible)
|
|
}
|
|
|
|
CoinUnloadProblem( hProb );
|
|
}
|
|
|
|
extern "C" SAL_DLLPUBLIC_EXPORT css::uno::XInterface *
|
|
com_sun_star_comp_Calc_CoinMPSolver_get_implementation(
|
|
css::uno::XComponentContext *,
|
|
css::uno::Sequence<css::uno::Any> const &)
|
|
{
|
|
return cppu::acquire(new CoinMPSolver());
|
|
}
|
|
|
|
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|