office-gobmx/sccomp/source/solver/LpsolveSolver.cxx
Noel Grandin 18715f6a63 remove unnecessary sequenceToContainer
If we are not going to manipulate the resulting vector, then it is
actually slower, since we have to allocate more storage for the vector

Change-Id: I65677007d105f4783603df74113ebed6db0b551b
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/133963
Tested-by: Jenkins
Reviewed-by: Noel Grandin <noel.grandin@collabora.co.uk>
2022-05-06 21:52:00 +02:00

334 lines
11 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2000, 2010 Oracle and/or its affiliates.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*
************************************************************************/
#include <sal/config.h>
#undef LANGUAGE_NONE
#if defined _WIN32
#define WINAPI __stdcall
#endif
#define LoadInverseLib FALSE
#define LoadLanguageLib FALSE
#ifdef SYSTEM_LPSOLVE
#include <lpsolve/lp_lib.h>
#else
#include <lp_lib.h>
#endif
#undef LANGUAGE_NONE
#include "SolverComponent.hxx"
#include <strings.hrc>
#include <com/sun/star/frame/XModel.hpp>
#include <com/sun/star/table/CellAddress.hpp>
#include <rtl/math.hxx>
#include <algorithm>
#include <memory>
#include <vector>
namespace com::sun::star::uno { class XComponentContext; }
using namespace com::sun::star;
namespace {
class LpsolveSolver : public SolverComponent
{
public:
LpsolveSolver() {}
private:
virtual void SAL_CALL solve() override;
virtual OUString SAL_CALL getImplementationName() override
{
return "com.sun.star.comp.Calc.LpsolveSolver";
}
virtual OUString SAL_CALL getComponentDescription() override
{
return SolverComponent::GetResourceString( RID_SOLVER_COMPONENT );
}
};
}
void SAL_CALL LpsolveSolver::solve()
{
uno::Reference<frame::XModel> xModel( mxDoc, uno::UNO_QUERY_THROW );
maStatus.clear();
mbSuccess = false;
if ( mnEpsilonLevel < EPS_TIGHT || mnEpsilonLevel > EPS_BAGGY )
{
maStatus = SolverComponent::GetResourceString( RID_ERROR_EPSILONLEVEL );
return;
}
xModel->lockControllers();
// collect variables in vector (?)
const auto & aVariableCells = maVariables;
size_t nVariables = aVariableCells.size();
size_t nVar = 0;
// collect all dependent cells
ScSolverCellHashMap aCellsHash;
aCellsHash[maObjective].reserve( nVariables + 1 ); // objective function
for (const auto& rConstr : std::as_const(maConstraints))
{
table::CellAddress aCellAddr = rConstr.Left;
aCellsHash[aCellAddr].reserve( nVariables + 1 ); // constraints: left hand side
if ( rConstr.Right >>= aCellAddr )
aCellsHash[aCellAddr].reserve( nVariables + 1 ); // constraints: right hand side
}
// set all variables to zero
//! store old values?
//! use old values as initial values?
for ( const auto& rVarCell : aVariableCells )
{
SolverComponent::SetValue( mxDoc, rVarCell, 0.0 );
}
// read initial values from all dependent cells
for ( auto& rEntry : aCellsHash )
{
double fValue = SolverComponent::GetValue( mxDoc, rEntry.first );
rEntry.second.push_back( fValue ); // store as first element, as-is
}
// loop through variables
for ( const auto& rVarCell : aVariableCells )
{
SolverComponent::SetValue( mxDoc, rVarCell, 1.0 ); // set to 1 to examine influence
// read value change from all dependent cells
for ( auto& rEntry : aCellsHash )
{
double fChanged = SolverComponent::GetValue( mxDoc, rEntry.first );
double fInitial = rEntry.second.front();
rEntry.second.push_back( fChanged - fInitial );
}
SolverComponent::SetValue( mxDoc, rVarCell, 2.0 ); // minimal test for linearity
for ( const auto& rEntry : aCellsHash )
{
double fInitial = rEntry.second.front();
double fCoeff = rEntry.second.back(); // last appended: coefficient for this variable
double fTwo = SolverComponent::GetValue( mxDoc, rEntry.first );
bool bLinear = rtl::math::approxEqual( fTwo, fInitial + 2.0 * fCoeff ) ||
rtl::math::approxEqual( fInitial, fTwo - 2.0 * fCoeff );
// second comparison is needed in case fTwo is zero
if ( !bLinear )
maStatus = SolverComponent::GetResourceString( RID_ERROR_NONLINEAR );
}
SolverComponent::SetValue( mxDoc, rVarCell, 0.0 ); // set back to zero for examining next variable
}
xModel->unlockControllers();
if ( !maStatus.isEmpty() )
return;
// build lp_solve model
lprec* lp = make_lp( 0, nVariables );
if ( !lp )
return;
set_outputfile( lp, const_cast<char*>( "" ) ); // no output
// set objective function
const std::vector<double>& rObjCoeff = aCellsHash[maObjective];
std::unique_ptr<REAL[]> pObjVal(new REAL[nVariables+1]);
pObjVal[0] = 0.0; // ignored
for (nVar=0; nVar<nVariables; nVar++)
pObjVal[nVar+1] = rObjCoeff[nVar+1];
set_obj_fn( lp, pObjVal.get() );
pObjVal.reset();
set_rh( lp, 0, rObjCoeff[0] ); // constant term of objective
// add rows
set_add_rowmode(lp, TRUE);
for (const auto& rConstr : std::as_const(maConstraints))
{
// integer constraints are set later
sheet::SolverConstraintOperator eOp = rConstr.Operator;
if ( eOp == sheet::SolverConstraintOperator_LESS_EQUAL ||
eOp == sheet::SolverConstraintOperator_GREATER_EQUAL ||
eOp == sheet::SolverConstraintOperator_EQUAL )
{
double fDirectValue = 0.0;
bool bRightCell = false;
table::CellAddress aRightAddr;
const uno::Any& rRightAny = rConstr.Right;
if ( rRightAny >>= aRightAddr )
bRightCell = true; // cell specified as right-hand side
else
rRightAny >>= fDirectValue; // constant value
table::CellAddress aLeftAddr = rConstr.Left;
const std::vector<double>& rLeftCoeff = aCellsHash[aLeftAddr];
std::unique_ptr<REAL[]> pValues(new REAL[nVariables+1] );
pValues[0] = 0.0; // ignored?
for (nVar=0; nVar<nVariables; nVar++)
pValues[nVar+1] = rLeftCoeff[nVar+1];
// if left hand cell has a constant term, put into rhs value
double fRightValue = -rLeftCoeff[0];
if ( bRightCell )
{
const std::vector<double>& rRightCoeff = aCellsHash[aRightAddr];
// modify pValues with rhs coefficients
for (nVar=0; nVar<nVariables; nVar++)
pValues[nVar+1] -= rRightCoeff[nVar+1];
fRightValue += rRightCoeff[0]; // constant term
}
else
fRightValue += fDirectValue;
int nConstrType = LE;
switch ( eOp )
{
case sheet::SolverConstraintOperator_LESS_EQUAL: nConstrType = LE; break;
case sheet::SolverConstraintOperator_GREATER_EQUAL: nConstrType = GE; break;
case sheet::SolverConstraintOperator_EQUAL: nConstrType = EQ; break;
default:
OSL_FAIL( "unexpected enum type" );
}
add_constraint( lp, pValues.get(), nConstrType, fRightValue );
}
}
set_add_rowmode(lp, FALSE);
// apply settings to all variables
for (nVar=0; nVar<nVariables; nVar++)
{
if ( !mbNonNegative )
set_unbounded(lp, nVar+1); // allow negative (default is non-negative)
//! collect bounds from constraints?
if ( mbInteger )
set_int(lp, nVar+1, TRUE);
}
// apply single-var integer constraints
for (const auto& rConstr : std::as_const(maConstraints))
{
sheet::SolverConstraintOperator eOp = rConstr.Operator;
if ( eOp == sheet::SolverConstraintOperator_INTEGER ||
eOp == sheet::SolverConstraintOperator_BINARY )
{
table::CellAddress aLeftAddr = rConstr.Left;
// find variable index for cell
for (nVar=0; nVar<nVariables; nVar++)
if ( AddressEqual( aVariableCells[nVar], aLeftAddr ) )
{
if ( eOp == sheet::SolverConstraintOperator_INTEGER )
set_int(lp, nVar+1, TRUE);
else
set_binary(lp, nVar+1, TRUE);
}
}
}
if ( mbMaximize )
set_maxim(lp);
else
set_minim(lp);
if ( !mbLimitBBDepth )
set_bb_depthlimit( lp, 0 );
set_epslevel( lp, mnEpsilonLevel );
set_timeout( lp, mnTimeout );
// solve model
int nResult = ::solve( lp );
mbSuccess = ( nResult == OPTIMAL );
if ( mbSuccess )
{
// get solution
maSolution.realloc( nVariables );
REAL* pResultVar = nullptr;
get_ptr_variables( lp, &pResultVar );
std::copy_n(pResultVar, nVariables, maSolution.getArray());
mfResultValue = get_objective( lp );
}
else if ( nResult == INFEASIBLE )
maStatus = SolverComponent::GetResourceString( RID_ERROR_INFEASIBLE );
else if ( nResult == UNBOUNDED )
maStatus = SolverComponent::GetResourceString( RID_ERROR_UNBOUNDED );
else if ( nResult == TIMEOUT || nResult == SUBOPTIMAL )
maStatus = SolverComponent::GetResourceString( RID_ERROR_TIMEOUT );
// SUBOPTIMAL is assumed to be caused by a timeout, and reported as an error
delete_lp( lp );
}
extern "C" SAL_DLLPUBLIC_EXPORT css::uno::XInterface *
com_sun_star_comp_Calc_LpsolveSolver_get_implementation(
css::uno::XComponentContext *,
css::uno::Sequence<css::uno::Any> const &)
{
return cppu::acquire(new LpsolveSolver());
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */