office-gobmx/chart2/source/tools/InternalData.cxx
Noel Grandin 191f85df58 re-land "new loplugin typedefparam""
This reverts commit c9bb48386b,
and adds a bunch more fixes.

Change-Id: Ib584d302a73125528eba85fa1e722cb6fc41538a
Reviewed-on: https://gerrit.libreoffice.org/68680
Tested-by: Jenkins
Reviewed-by: Noel Grandin <noel.grandin@collabora.co.uk>
2019-03-05 12:12:26 +01:00

556 lines
17 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <InternalData.hxx>
#include <ResId.hxx>
#include <strings.hrc>
#include <osl/diagnose.h>
#include <rtl/math.hxx>
#ifdef DEBUG_CHART2_TOOLS
#define DEBUG_INTERNAL_DATA 1
#endif
#ifdef DEBUG_INTERNAL_DATA
#include <svl/gridprinter.hxx>
#endif
#include <algorithm>
#include <iterator>
using ::com::sun::star::uno::Sequence;
using namespace ::com::sun::star;
using namespace ::std;
namespace chart
{
namespace
{
struct lcl_NumberedStringGenerator
{
lcl_NumberedStringGenerator( const OUString & rStub, const OUString & rWildcard ) :
m_aStub( rStub ),
m_nCounter( 0 ),
m_nStubStartIndex( rStub.indexOf( rWildcard )),
m_nWildcardLength( rWildcard.getLength())
{
}
vector< uno::Any > operator()()
{
vector< uno::Any > aRet(1);
aRet[0] <<= m_aStub.replaceAt( m_nStubStartIndex, m_nWildcardLength, OUString::number( ++m_nCounter ));
return aRet;
}
private:
OUString m_aStub;
sal_Int32 m_nCounter;
const sal_Int32 m_nStubStartIndex;
const sal_Int32 m_nWildcardLength;
};
template< typename T >
Sequence< T > lcl_ValarrayToSequence( const std::valarray< T > & rValarray )
{
// is there a more elegant way of conversion?
Sequence< T > aResult( rValarray.size());
for( size_t i = 0; i < rValarray.size(); ++i )
aResult[i] = rValarray[i];
return aResult;
}
} // anonymous namespace
InternalData::InternalData()
: m_nColumnCount( 0 )
, m_nRowCount( 0 )
, m_aRowLabels( 0 )
, m_aColumnLabels( 0 )
{}
static const double fDefaultData[] = {
9.10, 3.20, 4.54,
2.40, 8.80, 9.65,
3.10, 1.50, 3.70,
4.30, 9.02, 6.20
};
void InternalData::createDefaultData()
{
const sal_Int32 nRowCount = 4;
const sal_Int32 nColumnCount = 3;
m_nRowCount = nRowCount;
m_nColumnCount = nColumnCount;
const sal_Int32 nSize = nColumnCount * nRowCount;
// @todo: localize this!
const OUString aRowName(SchResId(STR_ROW_LABEL));
const OUString aColName(SchResId(STR_COLUMN_LABEL));
m_aData.resize( nSize );
for( sal_Int32 i=0; i<nSize; ++i )
m_aData[i] = fDefaultData[i];
m_aRowLabels.clear();
m_aRowLabels.reserve( m_nRowCount );
generate_n( back_inserter( m_aRowLabels ), m_nRowCount,
lcl_NumberedStringGenerator( aRowName, "%ROWNUMBER" ));
m_aColumnLabels.clear();
m_aColumnLabels.reserve( m_nColumnCount );
generate_n( back_inserter( m_aColumnLabels ), m_nColumnCount,
lcl_NumberedStringGenerator( aColName, "%COLUMNNUMBER" ));
}
void InternalData::setData( const Sequence< Sequence< double > >& rDataInRows )
{
m_nRowCount = rDataInRows.getLength();
m_nColumnCount = (m_nRowCount ? rDataInRows[0].getLength() : 0);
if( m_aRowLabels.size() != static_cast< sal_uInt32 >( m_nRowCount ))
m_aRowLabels.resize( m_nRowCount );
if( m_aColumnLabels.size() != static_cast< sal_uInt32 >( m_nColumnCount ))
m_aColumnLabels.resize( m_nColumnCount );
m_aData.resize( m_nRowCount * m_nColumnCount );
double fNan;
::rtl::math::setNan( & fNan );
// set all values to Nan
m_aData = fNan;
for( sal_Int32 nRow=0; nRow<m_nRowCount; ++nRow )
{
int nDataIdx = nRow*m_nColumnCount;
const sal_Int32 nMax = std::min( rDataInRows[nRow].getLength(), m_nColumnCount );
for( sal_Int32 nCol=0; nCol < nMax; ++nCol )
{
m_aData[nDataIdx] = rDataInRows[nRow][nCol];
nDataIdx += 1;
}
}
}
Sequence< Sequence< double > > InternalData::getData() const
{
Sequence< Sequence< double > > aResult( m_nRowCount );
for( sal_Int32 i=0; i<m_nRowCount; ++i )
aResult[i] = lcl_ValarrayToSequence< tDataType::value_type >(
m_aData[ std::slice( i*m_nColumnCount, m_nColumnCount, 1 ) ] );
return aResult;
}
Sequence< double > InternalData::getColumnValues( sal_Int32 nColumnIndex ) const
{
if( nColumnIndex >= 0 && nColumnIndex < m_nColumnCount )
return lcl_ValarrayToSequence< tDataType::value_type >(
m_aData[ std::slice( nColumnIndex, m_nRowCount, m_nColumnCount ) ] );
return Sequence< double >();
}
Sequence< double > InternalData::getRowValues( sal_Int32 nRowIndex ) const
{
if( nRowIndex >= 0 && nRowIndex < m_nRowCount )
return lcl_ValarrayToSequence< tDataType::value_type >(
m_aData[ std::slice( nRowIndex*m_nColumnCount, m_nColumnCount, 1 ) ] );
return Sequence< double >();
}
void InternalData::setColumnValues( sal_Int32 nColumnIndex, const vector< double > & rNewData )
{
if( nColumnIndex < 0 )
return;
enlargeData( nColumnIndex + 1, rNewData.size() );
tDataType aSlice = m_aData[ std::slice( nColumnIndex, m_nRowCount, m_nColumnCount ) ];
for( vector< double >::size_type i = 0; i < rNewData.size(); ++i )
aSlice[i] = rNewData[i];
m_aData[ std::slice( nColumnIndex, m_nRowCount, m_nColumnCount ) ] = aSlice;
}
void InternalData::setRowValues( sal_Int32 nRowIndex, const vector< double > & rNewData )
{
if( nRowIndex < 0 )
return;
enlargeData( rNewData.size(), nRowIndex+1 );
tDataType aSlice = m_aData[ std::slice( nRowIndex*m_nColumnCount, m_nColumnCount, 1 ) ];
for( vector< double >::size_type i = 0; i < rNewData.size(); ++i )
aSlice[i] = rNewData[i];
m_aData[ std::slice( nRowIndex*m_nColumnCount, m_nColumnCount, 1 ) ]= aSlice;
}
void InternalData::setComplexColumnLabel( sal_Int32 nColumnIndex, const vector< uno::Any >& rComplexLabel )
{
if( nColumnIndex < 0 )
return;
if( nColumnIndex >= static_cast< sal_Int32 >( m_aColumnLabels.size() ) )
{
m_aColumnLabels.resize(nColumnIndex+1);
enlargeData( nColumnIndex+1, 0 );
}
m_aColumnLabels[nColumnIndex]=rComplexLabel;
dump();
}
void InternalData::setComplexRowLabel( sal_Int32 nRowIndex, const vector< uno::Any >& rComplexLabel )
{
if( nRowIndex < 0 )
return;
if( nRowIndex >= static_cast< sal_Int32 >( m_aRowLabels.size() ) )
{
m_aRowLabels.resize(nRowIndex+1);
enlargeData( 0, nRowIndex+1 );
}
m_aRowLabels[nRowIndex] = rComplexLabel;
}
vector< uno::Any > InternalData::getComplexColumnLabel( sal_Int32 nColumnIndex ) const
{
if( nColumnIndex < static_cast< sal_Int32 >( m_aColumnLabels.size() ) )
return m_aColumnLabels[nColumnIndex];
else
return vector< uno::Any >();
}
vector< uno::Any > InternalData::getComplexRowLabel( sal_Int32 nRowIndex ) const
{
if( nRowIndex < static_cast< sal_Int32 >( m_aRowLabels.size() ) )
return m_aRowLabels[nRowIndex];
else
return vector< uno::Any >();
}
void InternalData::swapRowWithNext( sal_Int32 nRowIndex )
{
if( nRowIndex < m_nRowCount - 1 )
{
const sal_Int32 nMax = m_nColumnCount;
for( sal_Int32 nColIdx=0; nColIdx<nMax; ++nColIdx )
{
size_t nIndex1 = nColIdx + nRowIndex*m_nColumnCount;
size_t nIndex2 = nIndex1 + m_nColumnCount;
double fTemp = m_aData[nIndex1];
m_aData[nIndex1] = m_aData[nIndex2];
m_aData[nIndex2] = fTemp;
}
vector< uno::Any > aTemp( m_aRowLabels[nRowIndex] );
m_aRowLabels[nRowIndex] = m_aRowLabels[nRowIndex + 1];
m_aRowLabels[nRowIndex + 1] = aTemp;
}
}
void InternalData::swapColumnWithNext( sal_Int32 nColumnIndex )
{
if( nColumnIndex < m_nColumnCount - 1 )
{
const sal_Int32 nMax = m_nRowCount;
for( sal_Int32 nRowIdx=0; nRowIdx<nMax; ++nRowIdx )
{
size_t nIndex1 = nColumnIndex + nRowIdx*m_nColumnCount;
size_t nIndex2 = nIndex1 + 1;
double fTemp = m_aData[nIndex1];
m_aData[nIndex1] = m_aData[nIndex2];
m_aData[nIndex2] = fTemp;
}
vector< uno::Any > aTemp( m_aColumnLabels[nColumnIndex] );
m_aColumnLabels[nColumnIndex] = m_aColumnLabels[nColumnIndex + 1];
m_aColumnLabels[nColumnIndex + 1] = aTemp;
}
}
bool InternalData::enlargeData( sal_Int32 nColumnCount, sal_Int32 nRowCount )
{
sal_Int32 nNewColumnCount( std::max<sal_Int32>( m_nColumnCount, nColumnCount ) );
sal_Int32 nNewRowCount( std::max<sal_Int32>( m_nRowCount, nRowCount ) );
sal_Int32 nNewSize( nNewColumnCount*nNewRowCount );
bool bGrow = (nNewSize > m_nColumnCount*m_nRowCount);
if( bGrow )
{
double fNan;
::rtl::math::setNan( &fNan );
tDataType aNewData( fNan, nNewSize );
// copy old data
for( int nCol=0; nCol<m_nColumnCount; ++nCol )
static_cast< tDataType >(
aNewData[ std::slice( nCol, m_nRowCount, nNewColumnCount ) ] ) =
m_aData[ std::slice( nCol, m_nRowCount, m_nColumnCount ) ];
m_aData.resize( nNewSize );
m_aData = aNewData;
}
m_nColumnCount = nNewColumnCount;
m_nRowCount = nNewRowCount;
return bGrow;
}
void InternalData::insertColumn( sal_Int32 nAfterIndex )
{
// note: -1 is allowed, as we insert after the given index
OSL_ASSERT( nAfterIndex < m_nColumnCount && nAfterIndex >= -1 );
if( nAfterIndex >= m_nColumnCount || nAfterIndex < -1 )
return;
sal_Int32 nNewColumnCount = m_nColumnCount + 1;
sal_Int32 nNewSize( nNewColumnCount * m_nRowCount );
double fNan;
::rtl::math::setNan( &fNan );
tDataType aNewData( fNan, nNewSize );
// copy old data
int nCol=0;
for( ; nCol<=nAfterIndex; ++nCol )
aNewData[ std::slice( nCol, m_nRowCount, nNewColumnCount ) ] =
static_cast< tDataType >(
m_aData[ std::slice( nCol, m_nRowCount, m_nColumnCount ) ] );
for( ++nCol; nCol<nNewColumnCount; ++nCol )
aNewData[ std::slice( nCol, m_nRowCount, nNewColumnCount ) ] =
static_cast< tDataType >(
m_aData[ std::slice( nCol - 1, m_nRowCount, m_nColumnCount ) ] );
m_nColumnCount = nNewColumnCount;
m_aData.resize( nNewSize );
m_aData = aNewData;
// labels
if( nAfterIndex < static_cast< sal_Int32 >( m_aColumnLabels.size()))
m_aColumnLabels.insert( m_aColumnLabels.begin() + (nAfterIndex + 1), vector< uno::Any >(1) );
dump();
}
sal_Int32 InternalData::appendColumn()
{
insertColumn( getColumnCount() - 1 );
return getColumnCount() - 1;
}
sal_Int32 InternalData::appendRow()
{
insertRow( getRowCount() - 1 );
return getRowCount() - 1;
}
sal_Int32 InternalData::getRowCount() const
{
return m_nRowCount;
}
sal_Int32 InternalData::getColumnCount() const
{
return m_nColumnCount;
}
void InternalData::insertRow( sal_Int32 nAfterIndex )
{
// note: -1 is allowed, as we insert after the given index
OSL_ASSERT( nAfterIndex < m_nRowCount && nAfterIndex >= -1 );
if( nAfterIndex >= m_nRowCount || nAfterIndex < -1 )
return;
sal_Int32 nNewRowCount = m_nRowCount + 1;
sal_Int32 nNewSize( m_nColumnCount * nNewRowCount );
double fNan;
::rtl::math::setNan( &fNan );
tDataType aNewData( fNan, nNewSize );
// copy old data
sal_Int32 nIndex = nAfterIndex + 1;
aNewData[ std::slice( 0, nIndex * m_nColumnCount, 1 ) ] =
static_cast< tDataType >(
m_aData[ std::slice( 0, nIndex * m_nColumnCount, 1 ) ] );
if( nIndex < m_nRowCount )
{
sal_Int32 nRemainingCount = m_nColumnCount * (m_nRowCount - nIndex);
aNewData[ std::slice( (nIndex + 1) * m_nColumnCount, nRemainingCount, 1 ) ] =
static_cast< tDataType >(
m_aData[ std::slice( nIndex * m_nColumnCount, nRemainingCount, 1 ) ] );
}
m_nRowCount = nNewRowCount;
m_aData.resize( nNewSize );
m_aData = aNewData;
// labels
if( nAfterIndex < static_cast< sal_Int32 >( m_aRowLabels.size()))
m_aRowLabels.insert( m_aRowLabels.begin() + nIndex, vector< uno::Any > (1));
dump();
}
void InternalData::deleteColumn( sal_Int32 nAtIndex )
{
OSL_ASSERT( nAtIndex < m_nColumnCount && nAtIndex >= 0 );
if( nAtIndex >= m_nColumnCount || m_nColumnCount < 1 || nAtIndex < 0 )
return;
sal_Int32 nNewColumnCount = m_nColumnCount - 1;
sal_Int32 nNewSize( nNewColumnCount * m_nRowCount );
double fNan;
::rtl::math::setNan( &fNan );
tDataType aNewData( fNan, nNewSize );
// copy old data
int nCol=0;
for( ; nCol<nAtIndex; ++nCol )
aNewData[ std::slice( nCol, m_nRowCount, nNewColumnCount ) ] =
static_cast< tDataType >(
m_aData[ std::slice( nCol, m_nRowCount, m_nColumnCount ) ] );
for( ; nCol<nNewColumnCount; ++nCol )
aNewData[ std::slice( nCol, m_nRowCount, nNewColumnCount ) ] =
static_cast< tDataType >(
m_aData[ std::slice( nCol + 1, m_nRowCount, m_nColumnCount ) ] );
m_nColumnCount = nNewColumnCount;
m_aData.resize( nNewSize );
m_aData = aNewData;
// labels
if( nAtIndex < static_cast< sal_Int32 >( m_aColumnLabels.size()))
m_aColumnLabels.erase( m_aColumnLabels.begin() + nAtIndex );
dump();
}
void InternalData::deleteRow( sal_Int32 nAtIndex )
{
OSL_ASSERT( nAtIndex < m_nRowCount && nAtIndex >= 0 );
if( nAtIndex >= m_nRowCount || m_nRowCount < 1 || nAtIndex < 0 )
return;
sal_Int32 nNewRowCount = m_nRowCount - 1;
sal_Int32 nNewSize( m_nColumnCount * nNewRowCount );
double fNan;
::rtl::math::setNan( &fNan );
tDataType aNewData( fNan, nNewSize );
// copy old data
sal_Int32 nIndex = nAtIndex;
if( nIndex )
aNewData[ std::slice( 0, nIndex * m_nColumnCount, 1 ) ] =
static_cast< tDataType >(
m_aData[ std::slice( 0, nIndex * m_nColumnCount, 1 ) ] );
if( nIndex < nNewRowCount )
{
sal_Int32 nRemainingCount = m_nColumnCount * (nNewRowCount - nIndex);
aNewData[ std::slice( nIndex * m_nColumnCount, nRemainingCount, 1 ) ] =
static_cast< tDataType >(
m_aData[ std::slice( (nIndex + 1) * m_nColumnCount, nRemainingCount, 1 ) ] );
}
m_nRowCount = nNewRowCount;
m_aData.resize( nNewSize );
m_aData = aNewData;
// labels
if( nAtIndex < static_cast< sal_Int32 >( m_aRowLabels.size()))
m_aRowLabels.erase( m_aRowLabels.begin() + nAtIndex );
dump();
}
void InternalData::setComplexRowLabels( const tVecVecAny& rNewRowLabels )
{
m_aRowLabels = rNewRowLabels;
sal_Int32 nNewRowCount = static_cast< sal_Int32 >( m_aRowLabels.size() );
if( nNewRowCount < m_nRowCount )
m_aRowLabels.resize( m_nRowCount );
else
enlargeData( 0, nNewRowCount );
}
const InternalData::tVecVecAny& InternalData::getComplexRowLabels() const
{
return m_aRowLabels;
}
void InternalData::setComplexColumnLabels( const tVecVecAny& rNewColumnLabels )
{
m_aColumnLabels = rNewColumnLabels;
sal_Int32 nNewColumnCount = static_cast< sal_Int32 >( m_aColumnLabels.size() );
if( nNewColumnCount < m_nColumnCount )
m_aColumnLabels.resize( m_nColumnCount );
else
enlargeData( nNewColumnCount, 0 );
}
const InternalData::tVecVecAny& InternalData::getComplexColumnLabels() const
{
return m_aColumnLabels;
}
#ifdef DEBUG_INTERNAL_DATA
void InternalData::dump() const
{
// Header
if (!m_aColumnLabels.empty())
{
svl::GridPrinter aPrinter(1, m_aColumnLabels.size(), true);
for (size_t nCol = 0; nCol < m_aColumnLabels.size(); ++nCol)
{
if (m_aColumnLabels[nCol].empty())
continue;
OUString aStr;
if (m_aColumnLabels[nCol][0] >>= aStr)
aPrinter.set(0, nCol, aStr);
}
aPrinter.print("Header");
}
if (!m_aRowLabels.empty())
{
svl::GridPrinter aPrinter(m_aRowLabels.size(), m_aRowLabels[0].size());
for (size_t nRow = 0; nRow < m_aRowLabels.size(); ++nRow)
{
for (size_t nCol = 0; nCol < m_aRowLabels[nRow].size(); ++nCol)
{
OUString aStr;
if (m_aRowLabels[nRow].at(nCol) >>= aStr)
aPrinter.set(nRow, nCol, aStr);
}
}
aPrinter.print("Row labels");
}
svl::GridPrinter aPrinter(m_nRowCount, m_nColumnCount);
for (sal_Int32 nRow = 0; nRow < m_nRowCount; ++nRow)
{
tDataType aSlice( m_aData[ std::slice( nRow*m_nColumnCount, m_nColumnCount, 1 ) ] );
for (sal_Int32 nCol = 0; nCol < m_nColumnCount; ++nCol)
aPrinter.set(nRow, nCol, OUString::number(aSlice[nCol]));
}
aPrinter.print("Column data");
}
#else
void InternalData::dump() const {}
#endif
} // namespace chart
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */