office-gobmx/compilerplugins/clang/external.cxx
Stephan Bergmann 5323c18753 Adapt to Clang 18 trunk Linkage rework
<8775947633>
"[clang][NFC] Refactor clang::Linkage"

Change-Id: I35e3a3c7e3de29e4f3b9ee8dfc34e39ba2aa1c70
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/158919
Tested-by: Jenkins
Reviewed-by: Stephan Bergmann <sbergman@redhat.com>
2023-11-04 09:51:18 +01:00

610 lines
21 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; fill-column: 100 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
#ifndef LO_CLANG_SHARED_PLUGINS
#include <algorithm>
#include <cassert>
#include <iterator>
#include <list>
#include <set>
#include "clang/Sema/SemaDiagnostic.h"
#include "check.hxx"
#include "compat.hxx"
#include "plugin.hxx"
namespace
{
bool derivesFromTestFixture(CXXRecordDecl const* decl)
{
static auto const pred = [](CXXBaseSpecifier const& spec) {
if (auto const t = spec.getType()->getAs<RecordType>())
{ // (may be a template parameter)
return derivesFromTestFixture(dyn_cast<CXXRecordDecl>(t->getDecl()));
}
return false;
};
return loplugin::DeclCheck(decl).Class("TestFixture").Namespace("CppUnit").GlobalNamespace()
|| std::any_of(decl->bases_begin(), decl->bases_end(), pred)
|| std::any_of(decl->vbases_begin(), decl->vbases_end(), pred);
}
bool isInjectedFunction(FunctionDecl const* decl)
{
for (auto d = decl->redecls_begin(); d != decl->redecls_end(); ++d)
{
auto const c = d->getLexicalDeclContext();
if (!(c->isFunctionOrMethod() || c->isRecord()))
{
return false;
}
}
return true;
}
// Whether type1 mentions type2 (in a way relevant for argument-dependent name lookup):
bool mentions(QualType type1, QualType type2)
{
auto t1 = type1;
for (;;)
{
if (auto const t2 = t1->getAs<ReferenceType>())
{
t1 = t2->getPointeeType();
}
else if (auto const t3 = t1->getAs<clang::PointerType>())
{
t1 = t3->getPointeeType();
}
else if (auto const t4 = t1->getAsArrayTypeUnsafe())
{
t1 = t4->getElementType();
}
else
{
break;
}
}
if (t1.getCanonicalType().getTypePtr() == type2.getTypePtr())
{
return true;
}
if (auto const t2 = t1->getAs<TemplateSpecializationType>())
{
auto const args = t2->template_arguments();
for (auto a = args.begin(); a != args.end(); ++a)
{
if (a->getKind() != TemplateArgument::Type)
{
continue;
}
if (mentions(a->getAsType(), type2))
{
return true;
}
}
auto const t3 = t2->desugar();
if (t3.getTypePtr() == t2)
{
return false;
}
return mentions(t3, type2);
}
if (auto const t2 = t1->getAs<FunctionProtoType>())
{
if (mentions(t2->getReturnType(), type2))
{
return true;
}
for (auto t3 = t2->param_type_begin(); t3 != t2->param_type_end(); ++t3)
{
if (mentions(*t3, type2))
{
return true;
}
}
return false;
}
if (auto const t2 = t1->getAs<MemberPointerType>())
{
if (t2->getClass()->getUnqualifiedDesugaredType() == type2.getTypePtr())
{
return true;
}
return mentions(t2->getPointeeType(), type2);
}
return false;
}
bool hasSalDllpublicExportAttr(Decl const* decl)
{
if (auto const attr = decl->getAttr<VisibilityAttr>())
{
return attr->getVisibility() == VisibilityAttr::Default;
}
return decl->hasAttr<DLLExportAttr>();
}
class External : public loplugin::FilteringPlugin<External>
{
public:
explicit External(loplugin::InstantiationData const& data)
: FilteringPlugin(data)
{
}
void run() override { TraverseDecl(compiler.getASTContext().getTranslationUnitDecl()); }
bool VisitTagDecl(TagDecl* decl)
{
if (isa<ClassTemplateSpecializationDecl>(decl))
{
return true;
}
if (!decl->isThisDeclarationADefinition())
{
return true;
}
if (isa<CXXRecordDecl>(decl->getDeclContext()))
{
return true;
}
if (!compiler.getLangOpts().CPlusPlus)
{
return true;
}
if (auto const d = dyn_cast<CXXRecordDecl>(decl))
{
if (d->getDescribedClassTemplate() != nullptr)
{
return true;
}
if (hasSalDllpublicExportAttr(d))
{
// If the class definition has explicit default visibility, then assume that it
// needs to be present (e.g., a backwards-compatibility stub like in
// cppuhelper/source/compat.cxx):
return true;
}
if (derivesFromTestFixture(d))
{
// The names of CppUnit tests (that can be specified with CPPUNIT_TEST_NAME) are
// tied to the fully-qualified names of classes derived from CppUnit::TestFixture,
// so avoid unnamed namespaces in those classes' names:
return true;
}
}
return handleDeclaration(decl);
}
bool VisitFunctionDecl(FunctionDecl* decl)
{
if (isa<CXXMethodDecl>(decl))
{
return true;
}
if (decl->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
{
return true;
}
if (!decl->isThisDeclarationADefinition())
{
return true;
}
if (decl->isMain() || decl->isMSVCRTEntryPoint())
{
return true;
}
if (loplugin::hasCLanguageLinkageType(decl)
&& loplugin::DeclCheck(decl).Function("_DllMainCRTStartup").GlobalNamespace())
{
return true;
}
// If the function definition is explicit marked SAL_DLLPUBLIC_EXPORT or similar, then
// assume that it needs to be present (e.g., only called via dlopen, or a backwards-
// compatibility stub like in sal/osl/all/compat.cxx):
if (hasSalDllpublicExportAttr(decl))
{
return true;
}
auto const canon = decl->getCanonicalDecl();
if (loplugin::hasCLanguageLinkageType(canon)
&& (canon->hasAttr<ConstructorAttr>() || canon->hasAttr<DestructorAttr>()))
{
return true;
}
if (compiler.getDiagnostics().getDiagnosticLevel(diag::warn_unused_function,
decl->getLocation())
< DiagnosticsEngine::Warning)
{
// Don't warn about e.g.
//
// G_DEFINE_TYPE (GLOAction, g_lo_action, G_TYPE_OBJECT);
//
// in vcl/unx/gtk/gloactiongroup.cxx (which expands to non-static g_lo_action_get_type
// function definition), which is already wrapped in
//
// #pragma GCC diagnostic ignored "-Wunused-function"
return true;
}
if (isInjectedFunction(decl))
{
return true;
}
return handleDeclaration(decl);
}
bool VisitVarDecl(VarDecl* decl)
{
if (decl->isStaticDataMember())
{
return true;
}
if (isa<VarTemplateSpecializationDecl>(decl))
{
return true;
}
if (!decl->isThisDeclarationADefinition())
{
return true;
}
if (loplugin::DeclCheck(decl).Var("_pRawDllMain").GlobalNamespace())
{
return true;
}
return handleDeclaration(decl);
}
bool VisitClassTemplateDecl(ClassTemplateDecl* decl)
{
if (!decl->isThisDeclarationADefinition())
{
return true;
}
if (isa<CXXRecordDecl>(decl->getDeclContext()))
{
return true;
}
return handleDeclaration(decl);
}
bool VisitFunctionTemplateDecl(FunctionTemplateDecl* decl)
{
if (!decl->isThisDeclarationADefinition())
{
return true;
}
if (isa<CXXRecordDecl>(decl->getDeclContext()))
{
return true;
}
if (isInjectedFunction(decl->getTemplatedDecl()))
{
return true;
}
return handleDeclaration(decl);
}
bool VisitVarTemplateDecl(VarTemplateDecl* decl)
{
if (!decl->isThisDeclarationADefinition())
{
return true;
}
return handleDeclaration(decl);
}
private:
template <typename T> void reportSpecializations(T specializations)
{
for (auto const d : specializations)
{
auto const k = d->getTemplateSpecializationKind();
if (isTemplateExplicitInstantiationOrSpecialization(k))
{
report(DiagnosticsEngine::Note,
"explicit %select{instantiation|specialization}0 is here", d->getLocation())
<< (k == TSK_ExplicitSpecialization) << d->getSourceRange();
}
}
}
void computeAffectedTypes(Decl const* decl, std::vector<QualType>* affected)
{
assert(affected != nullptr);
if (auto const d = dyn_cast<EnumDecl>(decl))
{
affected->push_back(compiler.getASTContext().getEnumType(d));
}
else
{
//TODO: Derived types are also affected!
CXXRecordDecl const* rec;
if (auto const d = dyn_cast<ClassTemplateDecl>(decl))
{
rec = d->getTemplatedDecl();
}
else
{
rec = cast<CXXRecordDecl>(decl);
}
affected->push_back(compiler.getASTContext().getRecordType(rec));
for (auto d = rec->decls_begin(); d != rec->decls_end(); ++d)
{
if (*d != (*d)->getCanonicalDecl())
{
continue;
}
if (isa<TagDecl>(*d) || isa<ClassTemplateDecl>(*d))
{
if (auto const d1 = dyn_cast<RecordDecl>(*d))
{
if (d1->isInjectedClassName())
{
continue;
}
}
computeAffectedTypes(*d, affected);
}
}
}
}
void reportAssociatingFunctions(std::vector<QualType> const& affected, Decl* decl)
{
auto c = decl->getDeclContext();
while (isa<LinkageSpecDecl>(c) || c->isInlineNamespace())
{
c = c->getParent();
}
assert(c->isTranslationUnit() || c->isNamespace());
SmallVector<DeclContext*, 2> parts;
c->collectAllContexts(parts);
std::list<DeclContext const*> ctxs;
std::copy(parts.begin(), parts.end(),
std::back_insert_iterator<std::list<DeclContext const*>>(ctxs));
if (auto const d = dyn_cast<CXXRecordDecl>(decl))
{
// To find friend functions declared in the class:
ctxs.push_back(d);
}
std::set<FunctionDecl const*> fdecls; // to report every function just once
for (auto ctx = ctxs.begin(); ctx != ctxs.end(); ++ctx)
{
for (auto i = (*ctx)->decls_begin(); i != (*ctx)->decls_end(); ++i)
{
auto d = *i;
if (auto const d1 = dyn_cast<LinkageSpecDecl>(d))
{
ctxs.push_back(d1);
continue;
}
if (auto const d1 = dyn_cast<NamespaceDecl>(d))
{
if (d1->isInline())
{
ctxs.push_back(d1);
}
continue;
}
if (auto const d1 = dyn_cast<FriendDecl>(d))
{
d = d1->getFriendDecl();
if (d == nullptr) // happens for 'friend struct S;'
{
continue;
}
}
FunctionDecl const* f;
if (auto const d1 = dyn_cast<FunctionTemplateDecl>(d))
{
f = d1->getTemplatedDecl();
}
else
{
f = dyn_cast<FunctionDecl>(d);
if (f == nullptr)
{
continue;
}
}
if (!fdecls.insert(f->getCanonicalDecl()).second)
{
continue;
}
if (isa<CXXMethodDecl>(f))
{
continue;
}
for (auto const& t : affected)
{
auto const tc = t.getCanonicalType();
for (auto p = f->param_begin(); p != f->param_end(); ++p)
{
if (mentions((*p)->getType(), tc))
{
report(DiagnosticsEngine::Note,
"a %select{function|function template|function template "
"specialization}0 associating %1 is declared here",
f->getLocation())
<< (f->isFunctionTemplateSpecialization()
? 2
: f->getDescribedFunctionTemplate() != nullptr ? 1 : 0)
<< t << f->getSourceRange();
for (auto f1 = f->redecls_begin(); f1 != f->redecls_end(); ++f1)
{
if (*f1 == f)
{
continue;
}
report(DiagnosticsEngine::Note, "another declaration is here",
f1->getLocation())
<< f1->getSourceRange();
}
break;
}
}
}
}
}
}
void reportAssociatingFunctions(Decl* decl)
{
std::vector<QualType> affected; // enum/class/class template + recursively affected members
computeAffectedTypes(decl, &affected);
reportAssociatingFunctions(affected, decl);
}
bool handleDeclaration(NamedDecl* decl)
{
if (ignoreLocation(decl))
{
return true;
}
if (decl->getLinkageInternal() < compat::Linkage::Module)
{
return true;
}
// In some cases getLinkageInternal() arguably wrongly reports ExternalLinkage, see the
// commit message of <https://github.com/llvm/llvm-project/commit/
// df963a38a9e27fc43b485dfdf52bc1b090087e06> "DR1113: anonymous namespaces formally give
// their contents internal linkage":
//
// "We still deviate from the standard in one regard here: extern "C" declarations
// in anonymous namespaces are still granted external linkage. Changing those does
// not appear to have been an intentional consequence of the standard change in
// DR1113."
//
// Do not warn about such "wrongly external" declarations here:
if (decl->isInAnonymousNamespace())
{
return true;
}
for (Decl const* d = decl; d != nullptr; d = d->getPreviousDecl())
{
if (!compiler.getSourceManager().isInMainFile(d->getLocation()))
{
return true;
}
}
if (compiler.getSourceManager().isMacroBodyExpansion(decl->getLocation()))
{
if (Lexer::getImmediateMacroName(decl->getLocation(), compiler.getSourceManager(),
compiler.getLangOpts())
== "MDDS_MTV_DEFINE_ELEMENT_CALLBACKS")
{
// Even wrapping in an unnamed namespace or sneaking "static" into the macro
// wouldn't help, as then some of the functions it defines would be flagged as
// unused:
return true;
}
}
else if (compiler.getSourceManager().isMacroArgExpansion(decl->getLocation()))
{
if (Lexer::getImmediateMacroName(decl->getLocation(), compiler.getSourceManager(),
compiler.getLangOpts())
== "DEFINE_GUID")
{
// Windows, guiddef.h:
return true;
}
}
TypedefNameDecl const* typedefed = nullptr;
if (auto const d = dyn_cast<TagDecl>(decl))
{
typedefed = d->getTypedefNameForAnonDecl();
}
bool canStatic;
if (auto const d = dyn_cast<CXXRecordDecl>(decl))
{
canStatic = d->isUnion() && d->isAnonymousStructOrUnion();
}
else
{
canStatic = isa<FunctionDecl>(decl) || isa<VarDecl>(decl)
|| isa<FunctionTemplateDecl>(decl) || isa<VarTemplateDecl>(decl);
}
// In general, moving functions into an unnamed namespace can: break ADL like in
//
// struct S1 { int f() { return 1; } };
// int f(S1 s) { return s.f(); }
// namespace N {
// struct S2: S1 { int f() { return 0; } };
// int f(S2 s) { return s.f(); } // [*]
// }
// int main() { return f(N::S2()); }
//
// changing from returning 0 to returning 1 when [*] is moved into an unnamed namespace; can
// conflict with function declarations in the moved function like in
//
// int f(int) { return 0; }
// namespace { int f(int) { return 1; } }
// int g() { // [*]
// int f(int);
// return f(0);
// }
// int main() { return g(); }
//
// changing from returning 0 to returning 1 when [*] is moved into an unnamed namespace; and
// can conflict with overload resolution in general like in
//
// int f(int) { return 0; }
// namespace { int f(...) { return 1; } }
// int g() { return f(0); } // [*]
// int main() { return g(); }
//
// changing from returning 0 to returning 1 when [*] is moved into an unnamed namespace:
auto const canUnnamed = compiler.getLangOpts().CPlusPlus
&& !(isa<FunctionDecl>(decl) || isa<FunctionTemplateDecl>(decl));
assert(canStatic || canUnnamed);
report(
DiagnosticsEngine::Warning,
("externally available%select{| typedef'ed}0 entity %1 is not previously declared in an"
" included file (if it is only used in this translation unit,"
" %select{|make it static}2%select{| or }3%select{|put it in an unnamed namespace}4;"
" otherwise, provide a declaration of it in an included file)"),
decl->getLocation())
<< (typedefed != nullptr) << (typedefed == nullptr ? decl : typedefed) << canStatic
<< (canStatic && canUnnamed) << canUnnamed << decl->getSourceRange();
for (auto d = decl->redecls_begin(); d != decl->redecls_end(); ++d)
{
if (*d == decl)
{
continue;
}
report(DiagnosticsEngine::Note, "another declaration is here", d->getLocation())
<< d->getSourceRange();
}
//TODO: Class template specializations can be in the enclosing namespace, so no need to
// list them here (as they won't need to be put into the unnamed namespace too, unlike for
// specializations of function and variable templates); and explicit function template
// specializations cannot have storage-class specifiers, so as we only suggest to make
// function templates static (but not to move them into an unnamed namespace), no need to
// list function template specializations here, either:
if (auto const d = dyn_cast<VarTemplateDecl>(decl))
{
reportSpecializations(d->specializations());
}
if (isa<TagDecl>(decl) || isa<ClassTemplateDecl>(decl))
{
reportAssociatingFunctions(decl);
}
return true;
}
};
loplugin::Plugin::Registration<External> external("external");
} // namespace
#endif // LO_CLANG_SHARED_PLUGINS
/* vim:set shiftwidth=4 softtabstop=4 expandtab cinoptions=b1,g0,N-s cinkeys+=0=break: */