office-gobmx/include/o3tl/cow_wrapper.hxx
Gabor Kelemen 807f238f12 Recheck include/[e-r]* with IWYU
See tdf#42949 for motivation

Change-Id: I44e4e3a88067c1c29ce9d563b22741e984b43576
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/126964
Tested-by: Jenkins
Reviewed-by: Miklos Vajna <vmiklos@collabora.com>
2021-12-20 10:06:34 +01:00

387 lines
12 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#ifndef INCLUDED_O3TL_COW_WRAPPER_HXX
#define INCLUDED_O3TL_COW_WRAPPER_HXX
#include <osl/interlck.h>
#include <optional>
#include <cstddef>
namespace o3tl
{
/** Thread-unsafe refcounting
This is the default locking policy for cow_wrapper. No
locking/guarding against concurrent access is performed
whatsoever.
*/
struct UnsafeRefCountingPolicy
{
typedef std::size_t ref_count_t;
static void incrementCount( ref_count_t& rCount ) { ++rCount; }
static bool decrementCount( ref_count_t& rCount ) { return --rCount != 0; }
};
/** Thread-safe refcounting
Use this to have the cow_wrapper refcounting mechanisms employ
the thread-safe oslInterlockedCount .
*/
struct ThreadSafeRefCountingPolicy
{
typedef oslInterlockedCount ref_count_t;
static void incrementCount( ref_count_t& rCount ) { osl_atomic_increment(&rCount); }
static bool decrementCount( ref_count_t& rCount )
{
return osl_atomic_decrement(&rCount) != 0;
}
};
/** Copy-on-write wrapper.
This template provides copy-on-write semantics for the wrapped
type: when copying, the operation is performed shallow,
i.e. different cow_wrapper objects share the same underlying
instance. Only when accessing the underlying object via
non-const methods, a unique copy is provided.
The type parameter <code>T</code> must satisfy the following
requirements: it must be default-constructible, copyable (it
need not be assignable), and be of non-reference type. Note
that, despite the fact that this template provides access to
the wrapped type via pointer-like methods
(<code>operator->()</code> and <code>operator*()</code>), it does
<em>not</em> work like e.g. the std smart pointer wrappers
(shared_ptr, unique_ptr, etc.). Internally, the cow_wrapper
holds a by-value instance of the wrapped object. This is to
avoid one additional heap allocation, and providing access via
<code>operator->()</code>/<code>operator*()</code> is because
<code>operator.()</code> cannot be overridden.
Regarding thread safety: this wrapper is <em>not</em>
thread-safe per se, because cow_wrapper has no way of
synchronizing the potentially many different cow_wrapper
instances, that reference a single shared value_type
instance. That said, when passing
<code>ThreadSafeRefCountingPolicy</code> as the
<code>MTPolicy</code> parameter, accessing a thread-safe
pointee through multiple cow_wrapper instances might be
thread-safe, if the individual pointee methods are
thread-safe, <em>including</em> pointee's copy
constructor. Any wrapped object that needs external
synchronisation (e.g. via an external mutex, which arbitrates
access to object methods, and can be held across multiple
object method calls) cannot easily be dealt with in a
thread-safe way, because, as noted, objects are shared behind
the client's back.
@attention if one wants to use the pimpl idiom together with
cow_wrapper (i.e. put an opaque type into the cow_wrapper),
then <em>all<em> methods in the surrounding class needs to be
non-inline (<em>including</em> destructor, copy constructor
and assignment operator).
@example
<pre>
class cow_wrapper_client_impl;
class cow_wrapper_client
{
public:
cow_wrapper_client();
cow_wrapper_client( const cow_wrapper_client& );
cow_wrapper_client( cow_wrapper_client&& );
~cow_wrapper_client();
cow_wrapper_client& operator=( const cow_wrapper_client& );
cow_wrapper_client& operator=( cow_wrapper_client&& );
void modify( int nVal );
int queryUnmodified() const;
private:
o3tl::cow_wrapper< cow_wrapper_client_impl > maImpl;
};
</pre>
and the implementation file would look like this:
<pre>
class cow_wrapper_client_impl
{
public:
void setValue( int nVal ) { mnValue = nVal; }
int getValue() const { return mnValue; }
private:
int mnValue;
}
cow_wrapper_client::cow_wrapper_client() :
maImpl()
{
}
cow_wrapper_client::cow_wrapper_client( const cow_wrapper_client& rSrc ) :
maImpl( rSrc.maImpl )
{
}
cow_wrapper_client::cow_wrapper_client( cow_wrapper_client& rSrc ) :
maImpl( std::move( rSrc.maImpl ) )
{
}
cow_wrapper_client::~cow_wrapper_client()
{
}
cow_wrapper_client& cow_wrapper_client::operator=( const cow_wrapper_client& rSrc )
{
maImpl = rSrc.maImpl;
return *this;
}
cow_wrapper_client& cow_wrapper_client::operator=( cow_wrapper_client&& rSrc )
{
maImpl = std::move( rSrc.maImpl );
return *this;
}
void cow_wrapper_client::modify( int nVal )
{
maImpl->setValue( nVal );
}
int cow_wrapper_client::queryUnmodified() const
{
return maImpl->getValue();
}
</pre>
*/
template<typename T, class MTPolicy=UnsafeRefCountingPolicy> class cow_wrapper
{
/** shared value object - gets cloned before cow_wrapper hands
out a non-const reference to it
*/
struct impl_t
{
impl_t(const impl_t&) = delete;
impl_t& operator=(const impl_t&) = delete;
impl_t() :
m_value(),
m_ref_count(1)
{
}
explicit impl_t( const T& v ) :
m_value(v),
m_ref_count(1)
{
}
explicit impl_t( T&& v ) :
m_value(std::move(v)),
m_ref_count(1)
{
}
T m_value;
typename MTPolicy::ref_count_t m_ref_count;
};
void release()
{
if( m_pimpl && !MTPolicy::decrementCount(m_pimpl->m_ref_count) )
{
delete m_pimpl;
m_pimpl = nullptr;
}
}
public:
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef MTPolicy mt_policy;
/** Default-construct wrapped type instance
*/
cow_wrapper() :
m_pimpl( new impl_t() )
{
}
/** Copy-construct wrapped type instance from given object
*/
explicit cow_wrapper( const value_type& r ) :
m_pimpl( new impl_t(r) )
{
}
/** Move-construct wrapped type instance from given object
*/
explicit cow_wrapper( value_type&& r ) :
m_pimpl( new impl_t(std::move(r)) )
{
}
/** Shallow-copy given cow_wrapper
*/
explicit cow_wrapper( const cow_wrapper& rSrc ) : // nothrow
m_pimpl( rSrc.m_pimpl )
{
MTPolicy::incrementCount( m_pimpl->m_ref_count );
}
/** Move-construct and steal rSrc shared resource
*/
explicit cow_wrapper( cow_wrapper&& rSrc ) noexcept :
m_pimpl( rSrc.m_pimpl )
{
rSrc.m_pimpl = nullptr;
}
// Only intended to be used by std::optional specialisations
explicit cow_wrapper( std::nullopt_t ) noexcept :
m_pimpl( nullptr )
{
}
// Only intended to be used by std::optional specialisations
explicit cow_wrapper( const cow_wrapper& rSrc, std::nullopt_t ) : // nothrow
m_pimpl( rSrc.m_pimpl )
{
if (m_pimpl)
MTPolicy::incrementCount( m_pimpl->m_ref_count );
}
~cow_wrapper() // nothrow, if ~T does not throw
{
release();
}
/// now sharing rSrc cow_wrapper instance with us
cow_wrapper& operator=( const cow_wrapper& rSrc ) // nothrow
{
// this already guards against self-assignment
MTPolicy::incrementCount( rSrc.m_pimpl->m_ref_count );
release();
m_pimpl = rSrc.m_pimpl;
return *this;
}
/// stealing rSrc's resource
cow_wrapper& operator=(cow_wrapper&& rSrc) noexcept
{
// self-movement guts ourself, see also 17.6.4.9
release();
m_pimpl = rSrc.m_pimpl;
rSrc.m_pimpl = nullptr;
return *this;
}
/// unshare with any other cow_wrapper instance
value_type& make_unique()
{
if( m_pimpl->m_ref_count > 1 )
{
impl_t* pimpl = new impl_t(m_pimpl->m_value);
release();
m_pimpl = pimpl;
}
return m_pimpl->m_value;
}
/// true, if not shared with any other cow_wrapper instance
bool is_unique() const // nothrow
{
return !m_pimpl || m_pimpl->m_ref_count == 1;
}
/// return number of shared instances (1 for unique object)
typename MTPolicy::ref_count_t use_count() const // nothrow
{
return m_pimpl ? m_pimpl->m_ref_count : 0;
}
void swap(cow_wrapper& r) // never throws
{
std::swap(m_pimpl, r.m_pimpl);
}
pointer operator->() { return &make_unique(); }
value_type& operator*() { return make_unique(); }
const_pointer operator->() const { return &m_pimpl->m_value; }
const value_type& operator*() const { return m_pimpl->m_value; }
pointer get() { return &make_unique(); }
const_pointer get() const { return &m_pimpl->m_value; }
/// true, if both cow_wrapper internally share the same object
bool same_object( const cow_wrapper& rOther ) const
{
return rOther.m_pimpl == m_pimpl;
}
// Only intended to be used by std::optional specialisations
bool empty() const { return m_pimpl == nullptr; }
// Only intended to be used by std::optional specialisations
void set_empty()
{
if (m_pimpl)
{
release();
m_pimpl = nullptr;
}
}
private:
impl_t* m_pimpl;
};
template<class T, class P> inline bool operator==( const cow_wrapper<T,P>& a,
const cow_wrapper<T,P>& b )
{
return a.same_object(b) || *a == *b;
}
template<class T, class P> inline bool operator!=( const cow_wrapper<T,P>& a,
const cow_wrapper<T,P>& b )
{
return !a.same_object(b) && *a != *b;
}
template<class A, class B, class P> inline bool operator<( const cow_wrapper<A,P>& a,
const cow_wrapper<B,P>& b )
{
return *a < *b;
}
template<class T, class P> inline void swap( cow_wrapper<T,P>& a,
cow_wrapper<T,P>& b )
{
a.swap(b);
}
}
#endif /* INCLUDED_O3TL_COW_WRAPPER_HXX */
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */