office-gobmx/agg/source/agg_trans_single_path.cpp
Jens-Heiner Rechtien a33d30556e INTEGRATION: CWS warnings01 (1.1.4); FILE MERGED
2005/12/02 10:37:51 mbu 1.1.4.1: necessary changes to prevent warnings
2006-06-20 04:00:03 +00:00

202 lines
6.4 KiB
C++
Executable file

//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.3
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#include "agg_math.h"
#include "agg_vertex_sequence.h"
#include "agg_trans_single_path.h"
namespace agg
{
//------------------------------------------------------------------------
trans_single_path::trans_single_path() :
m_base_length(0.0),
m_kindex(0.0),
m_status(initial),
m_preserve_x_scale(true)
{
}
//------------------------------------------------------------------------
void trans_single_path::reset()
{
m_src_vertices.remove_all();
m_kindex = 0.0;
m_status = initial;
}
//------------------------------------------------------------------------
void trans_single_path::move_to(double x, double y)
{
if(m_status == initial)
{
m_src_vertices.modify_last(vertex_dist(x, y));
m_status = making_path;
}
else
{
line_to(x, y);
}
}
//------------------------------------------------------------------------
void trans_single_path::line_to(double x, double y)
{
if(m_status == making_path)
{
m_src_vertices.add(vertex_dist(x, y));
}
}
//------------------------------------------------------------------------
void trans_single_path::finalize_path()
{
if(m_status == making_path && m_src_vertices.size() > 1)
{
unsigned i;
double dist;
double d;
if(m_src_vertices.size() > 2)
{
if(m_src_vertices[m_src_vertices.size() - 2].dist * 10.0 <
m_src_vertices[m_src_vertices.size() - 3].dist)
{
d = m_src_vertices[m_src_vertices.size() - 3].dist +
m_src_vertices[m_src_vertices.size() - 2].dist;
m_src_vertices[m_src_vertices.size() - 2] =
m_src_vertices[m_src_vertices.size() - 1];
m_src_vertices.remove_last();
m_src_vertices[m_src_vertices.size() - 2].dist = d;
}
}
dist = 0.0;
m_src_vertices.close(false);
for(i = 0; i < m_src_vertices.size(); i++)
{
vertex_dist& v = m_src_vertices[i];
double _d = v.dist;
v.dist = dist;
dist += _d;
}
m_kindex = (m_src_vertices.size() - 1) / dist;
m_status = ready;
}
}
//------------------------------------------------------------------------
double trans_single_path::total_length() const
{
if(m_base_length >= 1e-10) return m_base_length;
return (m_status == ready) ?
m_src_vertices[m_src_vertices.size() - 1].dist :
0.0;
}
//------------------------------------------------------------------------
void trans_single_path::transform(double *x, double *y) const
{
if(m_status == ready)
{
if(m_base_length > 1e-10)
{
*x *= m_src_vertices[m_src_vertices.size() - 1].dist /
m_base_length;
}
double x1 = 0.0;
double y1 = 0.0;
double dx = 1.0;
double dy = 1.0;
double d = 0.0;
double dd = 1.0;
if(*x < 0.0)
{
// Extrapolation on the left
//--------------------------
x1 = m_src_vertices[0].x;
y1 = m_src_vertices[0].y;
dx = m_src_vertices[1].x - x1;
dy = m_src_vertices[1].y - y1;
dd = m_src_vertices[1].dist - m_src_vertices[0].dist;
d = *x;
}
else
if(*x > m_src_vertices[m_src_vertices.size() - 1].dist)
{
// Extrapolation on the right
//--------------------------
unsigned i = m_src_vertices.size() - 2;
unsigned j = m_src_vertices.size() - 1;
x1 = m_src_vertices[j].x;
y1 = m_src_vertices[j].y;
dx = x1 - m_src_vertices[i].x;
dy = y1 - m_src_vertices[i].y;
dd = m_src_vertices[j].dist - m_src_vertices[i].dist;
d = *x - m_src_vertices[j].dist;
}
else
{
// Interpolation
//--------------------------
unsigned i = 0;
unsigned j = m_src_vertices.size() - 1;
if(m_preserve_x_scale)
{
unsigned k;
for(i = 0; (j - i) > 1; )
{
if(*x < m_src_vertices[k = (i + j) >> 1].dist)
{
j = k;
}
else
{
i = k;
}
}
d = m_src_vertices[i].dist;
dd = m_src_vertices[j].dist - d;
d = *x - d;
}
else
{
i = (unsigned)floor(*x * m_kindex);
j = i + 1;
dd = m_src_vertices[j].dist - m_src_vertices[i].dist;
d = ((*x * m_kindex) - i) * dd;
}
x1 = m_src_vertices[i].x;
y1 = m_src_vertices[i].y;
dx = m_src_vertices[j].x - x1;
dy = m_src_vertices[j].y - y1;
}
double x2 = x1 + dx * d / dd;
double y2 = y1 + dy * d / dd;
*x = x2 - *y * dy / dd;
*y = y2 + *y * dx / dd;
}
}
}