office-gobmx/README.cross

373 lines
16 KiB
Text

Cross-compiling LibreOffice
===========================
Notes on cross-compiling LibreOffice, originally written by Tor
Lillqvist <tlillqvist@novell.com> <tml@iki.fi> in May, 2011, for later
history see git log.
My cross-compilation experimentation is going on for four platforms:
Windows, iOS, Android and PowerPC Mac OS X. I work on the master
branch of LibreOffice. Some other people have talked about setting up
a separate branch for Android work, or even separate clones at
github. I am not interested in that.
Cross-compilation of LibreOffice completely is not possible yet. Much
work has been done, "baby steps" for some platforms, much more for
others, but a lot remains. For iOS and Android this work is highly
experimental and done mostly in my own spare time just for the hacking
pleasure. No promise, explicit or implied, is given that it will ever
be finished.
Searching for information about cross-compilation of OpenOffice.org
(the predecessor of LibreOffice) you will find information about what
actually was not cross-compilation, but using QEMU.
General
-------
In GNU Autoconf terminology, "build" is the platform on which you are
running a build on some software and "host" is the platform on which
the software you are building will run. Only in the specific case of
building compilers and other programming tools is the term "target"
used to indicate the platform for which the tools your are building
will produce code. As LibreOffice is not a compiler, the "target" term
should not be used in the context of cross-compilation.
(For a case where all three of "build", "host" and "target" are
different: consider a gcc cross-compiler running on Windows, producing
code for Android, where the cross-compiler itself was built on
Linux. (This is a real case.) An interesting tidbit is that such
configurations are called "Canadian Cross".)
Even though the LibreOffice build mechanism is highly unorthodox, the
configure script takes the normal --build and --host options like any
GNU Autoconf -based configure script. To cross-compile, you basically
need just to specify a suitable --host option and things should work
out nicely. In practise, some more details might be needed. See
examples below.
What is so hard, then?
----------------------
Despite the fact that the configure script takes normal --build and
--host options, that is just the beginning. In practise a lot of work
was necessary to separate tests for "host" and "build" platforms in
the configure script. See the git log for details. And the reasonably
"standard" configure.in is just the top level; when we get down to the
actual makefilery used to build the bits of LibreOffice, it gets much
worse.
Windows
-------
There is some support in LibreOffice already (from OpenOffice.org) for
building it locally on Windows with the GNU tool-chain (MinGW). But as
far as I know, that work has never attempted cross-compilation.
This OOo-originated MinGW support attempts to support both running
Cygwin gcc in its -mno-cygwin mode, and a native MinGW compiler. The
-mno-cygwin mechanism in the Cygwin gcc is rapidly being obsoleted, if
it isn't already, and I have not attempted to try to keep it working;
in fact I have activly cleaned out mechanisms related to this. Ditto
for native MinGW. If one compiles natively on Windows, just use
Microsoft's compiler. OOo/LO has been built for Windows all the time
using that.
In my opinion, the only case where it makes sense to use MinGW is for
cross-compilation. There is just too much crack on Windows anyway, and
it is a semi-miracle (well, make that the result of years of work)
that the MSVC build under Cygwin works as nicely as it does.
MinGW is available as cross-build toolchains pre-packaged in more or
less official packages for many Linux distros including Debian, Fedora,
openSUSE and SLE. Personally I use the mingw32 packages in the Open
Build Service, running on openSUSE:
http://download.opensuse.org/repositories/windows:/mingw:/win32/
For example, you can install it like this:
zypper ar http://download.opensuse.org/repositories/windows:/mingw:/win32/<your_os>/windows:mingw:win32.repo
where <your_os> is one of SLE_11, SLE_11_SP1, openSUSE_11.3, openSUSE_11.4 or
openSUSE_Factory.
zypper in mingw32-cross-gcc mingw32-cross-gcc-c++ mingw32-python-devel \
mingw32-libexpat-devel mingw32-libexpat mingw32-boost-devel \
mingw32-libhyphen-devel mingw32-libhyphen mingw32-hyphen-en \
mingw32-liblpsolve mingw32-liblpsolve-devel \
mingw32-libxml2-devel mingw32-libxslt-devel mingw32-libicu \
mingw32-libicu-devel mingw32-libgraphite2 mingw32-libgraphite2-devel \
mingw32-libcairo2 mingw32-cairo-devel mingw32-librsvg mingw32-librsvg-devel \
mingw32-hunspell mingw32-hunspell-devel mingw32-libcurl \
mingw32-libcurl-devel mingw32-libneon mingw32-libneon-devel \
mingw32-libopenssl mingw32-libopenssl-devel mingw32-libexttextcat \
mingw32-libexttextcat-devel mingw32-libdb mingw32-libdb-devel \
mingw32-cross-pkg-config mingw32-pkg-config mingw32-libcppunit \
mingw32-libcppunit-devel mingw32-libredland mingw32-libredland-devel \
mingw32-libmythes mingw32-libmythes-devel
There might be more that are missing, please read carefully what autogen.sh
tells you, and either remove one of the --with-system-*, or install the
missing dependency.
It also looks like graphite2.pc needs tweaking in order to work right; but
that's likely to be fixed in the openSUSE project.
It is somewhat unclear how well thought-out the conditionals and code
for MinGW inside the OOo-originated code in LibreOffice actually
are. What I have noticed of it seems a bit randomish, with
copy-pasting having been preferred to factoring out differences.
Most of the configuration settings are maintained in the LibreOfficeMinGW
distro-config, so in your autogen.lastrun, you can use:
CC=ccache i686-w64-mingw32-gcc
CXX=ccache i686-w64-mingw32-g++
CC_FOR_BUILD=ccache gcc
CXX_FOR_BUILD=ccache g++
--with-distro=LibreOfficeMinGW
Alternatively, you can use something like the following; but the preferred way
is to keep LibreOfficeMinGW distro up-to-date.
CC=ccache i686-w64-mingw32-gcc
CXX=ccache i686-w64-mingw32-g++
CC_FOR_BUILD=ccache gcc
CXX_FOR_BUILD=ccache g++
--build=x86_64-unknown-linux-gnu
--host=i686-w64-mingw32
--with-distro=LibreOfficeWin32
--disable-activex
--disable-binfilter
--disable-build-mozilla
--disable-directx
--disable-ext-nlpsolver
--disable-ext-pdfimport
--disable-ext-presenter-console
--disable-ext-presenter-minimizer
--disable-ext-report-builder
--disable-ext-scripting-beanshell
--disable-ext-scripting-javascript
--disable-ext-wiki-publisher
--disable-ext-wiki-publisher
--disable-mozilla
--disable-nss-module
--disable-zenity
--enable-python=system
--with-external-tar=/mnt/hemulen/ooo/git/master/src
--with-num-cpus=1
--with-max-jobs=1
--with-system-altlinuxhyph
--with-system-boost
--with-system-cairo
--with-system-cppunit
--with-system-curl
--with-system-db
--with-system-expat
--with-system-gettext
--with-system-hunspell
--with-system-icu
--with-system-libpng
--with-system-libwpd
--with-system-libwpg
--with-system-libwps
--with-system-libxml
--with-system-lpsolve
--with-system-mythes
--with-system-neon
--with-system-openssl
--with-system-redland
--with-vendor=no
--without-help
--without-helppack-integration
--without-myspell-dicts
Once you have compiled it, you may want to try to run it:
$ cd /tmp
$ tar xf <your-build-dir>/instsetoo_native/wntgcci.pro/LibreOffice_Dev/archive/install/en-US/LibO-Dev_OOO350m1_Win_x86_install-arc_en-US.tar.gz
$ cd LibO-Dev_OOO350m1_Win_x86_install-arc_en-US/LibO-dev\ 3.5/program
$ wine soffice.exe
NB. it is important to unpack somewhere low in the hierarchy structure (like
in /tmp as advised above), otherwise you'll get BerkeleyDB errors on startup.
And if you are brave enough, you can even debug it. First you have to add the
URE dll's to the wine's PATH using 'wine regedit' - see
http://www.winehq.org/docs/wineusr-guide/environment-variables, and add
Z:\tmp\LibO-Dev_OOO350m1_Win_x86_install-arc_en-US\LibO-dev 3.5\URE\bin
to "Path" in My Computer->HKEY_CURRENT_USER->Environment.
Then run linkoo, so that when you rebuild something, you can directly see the
changes the next time you run it:
solenv/bin/linkoo '/tmp/LibO-Dev_OOO350m1_Win_x86_install-arc_en-US/LibO-dev 3.5' <your_clone_dir>
And start debugging:
$ winedbg soffice.bin
Would be great to be able to use winedbg --gdb, but it was crashing here :-( -
but maybe you'll be more lucky.
TODO:
- installation
- so far the make_installer.pl calls makecab.exe, uuidgen.exe, and
others; would be best to avoid that if at all possible (using a free
cab implementation, part of Wine or something)
- MSI generation
- if at all possible, the make dev-install installation (with links
back to the build) should be done so that it would be directly
executable via wine after doing make dev-install :-)
- runtime
- no idea if the entire thing works after the installation at all; I
suppose there will be runtime problems to look at too
- cleanup
- enable & fix pieces that are currently disabled
- --without-myspell-dicts
- --disable-directx
- --disable-activex
- --disable-mozilla
- much of the stuff currently relies on --with-system-*, and
consequently on the mingw32-* openSUSE packages; might be good to be
able to build with as few dependencies as possible - but that is low
prio I think
- profiling
- when all the above is sorted out, we should look at the speed of
this vs. the speed of the MSVC version
iOS
---
iOS is the operating system of Apple's mobile devices. Clearly for a
device like the iPad it would be totally unacceptable to run a normal
LibreOffice application with a overlapping windows and mouse-oriented
GUI widgets. No work has been done (at least publicly) to design a
touch GUI for LibreOffice, so the work on cross-compiling LibreOffice
for iOS is extremely experimental, and of course partly pointless;)
But it is interesting and fun nonetheless.
Obviously it will make sense to build only a part of LibreOffice's
code for iOS. Most likely all GUI-oriented code should be left out,
and some iOS app that eventually wants to use the remaining bits will
handle all its GUI in a platform-dependent manner. How well it will be
possible to do such a split remains to be seen. As I said, this is
highly experimental and just in its baby steps phase.
Technically, one important special aspect of iOS is that apps are not
allowed to load own dynamic libraries. (System libraries are used in
the form of dynamic libraries, just like on Mac OS X, of which iOS is a
variant.) So all the libraries in LibreOffice that normally are shared
libraries (DLLs on Windows, shared objects (.so) on Linux, dynamic
libraries on Mac OS X (.dylib)) need to be built as static archives
instead. Obviously this will have some interesting consequences for
how UNO is implemented and used. None of that has been spared much
thought yet.
The Apple tool-chain for iOS cross-building is available only for
Mac OS X, so that is where I have been doing it.
Here is my autogen.lastrun for iOS (device):
CXX=ccache /Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/g++ -arch armv7 -isysroot /Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS5.0.sdk
CC=ccache /Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/gcc -arch armv7 -isysroot /Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS5.0.sdk
CC_FOR_BUILD=ccache /Xcode3/usr/bin/gcc-4.0 -mmacosx-version-min=10.4
CXX_FOR_BUILD=ccache /Xcode3/usr/bin/g++-4.0 -mmacosx-version-min=10.4
--with-distro=LibreOfficeiOS
--with-external-tar=/Volumes/ooo/git/master/src
--with-num-cpus=1
--with-max-jobs=1
--without-help
--without-helppack-integration
--without-myspell-dicts
And here for the iOS simulator:
CXX=ccache /Developer/Platforms/iPhoneSimulator.platform/Developer/usr/bin/g++ -arch i386 -isysroot /Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator5.0.sdk
CC=ccache /Developer/Platforms/iPhoneSimulator.platform/Developer/usr/bin/gcc -arch i386 -isysroot /Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator5.0.sdk
CC_FOR_BUILD=ccache /Xcode3/usr/bin/gcc-4.0 -mmacosx-version-min=10.4
CXX_FOR_BUILD=ccache /Xcode3/usr/bin/g++-4.0 -mmacosx-version-min=10.4
--with-distro=LibreOfficeiOS
--with-external-tar=/Volumes/ooo/git/master/src
--with-num-cpus=1
--with-max-jobs=1
--enable-debug
--without-help
--without-helppack-integration
--without-myspell-dicts
It seems that with the latest iOS SDK one has to do:
sudo ln -s i686-apple-darwin10 /Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator4.3.sdk/usr/include/c++/4.2.1/i686-apple-darwin11
or g++ won't find its headers like <bits/c++config.h>
Android
-------
I don't know much about Android, but from a technical point of view it
is a kind of Linux, of course. As far as I know it is allowed for an
Android app to use shared objects, but if it isn't, then just the same
approach as used on iOS will need to be used.
As for the GUI, the same holds as said above for iOS.
I have done my Android cross-compilation work on Linux (openSUSE in
particular) and Mac OS X. The Android cross-buld tool-chain (the
"Native Development Kit", or NDK) is available for Linux, Mac OS X and
Windows. (Trying to cross-compile from Windows will probably drive you
insane.)
Here is my autogen.lastrun for Android:
SYSBASE=/home/tml/android-ndk-r7/platforms/android-9/arch-arm
CC=ccache /home/tml/android-ndk-r7/toolchains/arm-linux-androideabi-4.4.3/prebuilt/linux-x86/bin/arm-linux-androideabi-gcc -march=armv7-a -mfloat-abi=softfp -mthumb -mfpu=neon -Wl,--fix-cortex-a8 --sysroot /home/tml/android-ndk-r7/platforms/android-9/arch-arm -L/home/tml/android-ndk-r7/sources/cxx-stl/gnu-libstdc++/libs/armeabi-v7a
CXX=ccache /home/tml/android-ndk-r7/toolchains/arm-linux-androideabi-4.4.3/prebuilt/linux-x86/bin/arm-linux-androideabi-g++ -march=armv7-a -mfloat-abi=softfp -mthumb -mfpu=neon -Wl,--fix-cortex-a8 --sysroot /home/tml/android-ndk-r7/platforms/android-9/arch-arm -I /home/tml/android-ndk-r7/sources/cxx-stl/gnu-libstdc++/include -I/home/tml/android-ndk-r7/sources/cxx-stl/gnu-libstdc++/libs/armeabi-v7a/include -L/home/tml/android-ndk-r7/sources/cxx-stl/gnu-libstdc++/libs/armeabi-v7a -fexceptions -frtti
AR=/home/tml/android-ndk-r7/toolchains/arm-linux-androideabi-4.4.3/prebuilt/linux-x86/bin/arm-linux-androideabi-ar
NM=/home/tml/android-ndk-r7/toolchains/arm-linux-androideabi-4.4.3/prebuilt/linux-x86/bin/arm-linux-androideabi-nm
OBJDUMP=/home/tml/android-ndk-r7/toolchains/arm-linux-androideabi-4.4.3/prebuilt/linux-x86/bin/arm-linux-androideabi-objdump
RANLIB=/home/tml/android-ndk-r7/toolchains/arm-linux-androideabi-4.4.3/prebuilt/linux-x86/bin/arm-linux-androideabi-ranlib
STRIP=/home/tml/android-ndk-r7/toolchains/arm-linux-androideabi-4.4.3/prebuilt/linux-x86/bin/arm-linux-androideabi-strip
CC_FOR_BUILD=ccache gcc
CXX_FOR_BUILD=ccache g++
--build=x86_64-unknown-linux-gnu
--disable-zenity
--with-distro=LibreOfficeAndroid
--with-external-tar=/mnt/hemulen/ooo/git/master/src
--disable-python
--with-num-cpus=1
--with-max-jobs=1
--without-helppack-integration
--without-myspell-dicts
PowerPC Mac OS X
----------------
Cross-compiling for PowerPC Mac OS X from Intel Mac OS X will probably
be easy. The APIs available should after all be closely identical to
those on Intel Mac OS X, and LibreOffice builds fine natively on
PowerPC Mac already. I have just started experimenting with it. My
autogen.lastrun looks like this:
CC=ccache /Xcode3/usr/bin/gcc-4.0 -arch ppc
CXX=ccache /Xcode3/usr/bin/g++-4.0 -arch ppc
CC_FOR_BUILD=ccache /Xcode3/usr/bin/gcc-4.0
CXX_FOR_BUILD=ccache /Xcode3/usr/bin/g++-4.0
--build=i386-apple-darwin10.7.0
--host=powerpc-apple-darwin10
--disable-mozilla
--disable-build-mozilla
--with-external-tar=/Volumes/ooo/git/master/src
That's all, thank you, and have a nice day. People with commit access,
feel free to edit this document, and add yourself below. Sorry for
writing now initially from such a personal point of view.
--Tor Lillqvist <tlillqvist@novell.com>, <tml@iki.fi>