7e776c0027
Change-Id: I150baadc442e57ee604563bc52965daa9d2e41af
328 lines
14 KiB
C++
328 lines
14 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/*
|
|
* This file is part of the LibreOffice project.
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
* This file incorporates work covered by the following license notice:
|
|
*
|
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed
|
|
* with this work for additional information regarding copyright
|
|
* ownership. The ASF licenses this file to you under the Apache
|
|
* License, Version 2.0 (the "License"); you may not use this file
|
|
* except in compliance with the License. You may obtain a copy of
|
|
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
|
|
*/
|
|
|
|
#ifndef INCLUDED_SVX_SVDTRANS_HXX
|
|
#define INCLUDED_SVX_SVDTRANS_HXX
|
|
|
|
#include <rtl/ustring.hxx>
|
|
#include <sal/log.hxx>
|
|
#include <svx/svxdllapi.h>
|
|
#include <tools/fract.hxx>
|
|
#include <tools/gen.hxx>
|
|
#include <tools/poly.hxx>
|
|
#include <vcl/field.hxx>
|
|
#include <vcl/mapmod.hxx>
|
|
|
|
// The DrawingEngine's angles are specified in 1/100th degrees
|
|
// We need to convert these angles to radians, in order to be able
|
|
// to process them with trigonometric functions.
|
|
// This is done, using the constant nPi180.
|
|
//
|
|
// Example usage:
|
|
// nAngle ... is an angle in 1/100 Deg
|
|
//
|
|
// Which is converted, by this:
|
|
// double nSin=sin(nAngle*nPi180);
|
|
//
|
|
// To convert it back, we use division.
|
|
const double nPi=3.14159265358979323846;
|
|
const double nPi180=0.000174532925199432957692222; // If we have too few digits, we get tan(4500*nPi180)!=1.0
|
|
|
|
// That maximum shear angle
|
|
#define SDRMAXSHEAR 8900
|
|
|
|
class XPolygon;
|
|
class XPolyPolygon;
|
|
|
|
inline long Round(double a) { return a>0.0 ? (long)(a+0.5) : -(long)((-a)+0.5); }
|
|
|
|
inline void MoveRect(Rectangle& rRect, const Size& S) { rRect.Move(S.Width(),S.Height()); }
|
|
inline void MovePoint(Point& rPnt, const Size& S) { rPnt.X()+=S.Width(); rPnt.Y()+=S.Height(); }
|
|
inline void MovePoly(tools::Polygon& rPoly, const Size& S) { rPoly.Move(S.Width(),S.Height()); }
|
|
void MoveXPoly(XPolygon& rPoly, const Size& S);
|
|
|
|
SVX_DLLPUBLIC void ResizeRect(Rectangle& rRect, const Point& rRef, const Fraction& xFact, const Fraction& yFact, bool bNoJustify = false);
|
|
inline void ResizePoint(Point& rPnt, const Point& rRef, Fraction xFact, Fraction yFact);
|
|
void ResizePoly(tools::Polygon& rPoly, const Point& rRef, const Fraction& xFact, const Fraction& yFact);
|
|
void ResizeXPoly(XPolygon& rPoly, const Point& rRef, const Fraction& xFact, const Fraction& yFact);
|
|
|
|
inline void RotatePoint(Point& rPnt, const Point& rRef, double sn, double cs);
|
|
SVX_DLLPUBLIC void RotatePoly(tools::Polygon& rPoly, const Point& rRef, double sn, double cs);
|
|
void RotateXPoly(XPolygon& rPoly, const Point& rRef, double sn, double cs);
|
|
void RotateXPoly(XPolyPolygon& rPoly, const Point& rRef, double sn, double cs);
|
|
|
|
void MirrorPoint(Point& rPnt, const Point& rRef1, const Point& rRef2);
|
|
void MirrorXPoly(XPolygon& rPoly, const Point& rRef1, const Point& rRef2);
|
|
|
|
inline void ShearPoint(Point& rPnt, const Point& rRef, double tn, bool bVShear = false);
|
|
SVX_DLLPUBLIC void ShearPoly(tools::Polygon& rPoly, const Point& rRef, double tn, bool bVShear = false);
|
|
void ShearXPoly(XPolygon& rPoly, const Point& rRef, double tn, bool bVShear = false);
|
|
|
|
/**
|
|
* rPnt.X/rPnt.Y is set to rCenter.X or rCenter.Y!
|
|
* We then only need to rotate rPnt by rCenter.
|
|
*
|
|
* @return the returned angle is in rad
|
|
*/
|
|
inline double GetCrookAngle(Point& rPnt, const Point& rCenter, const Point& rRad, bool bVertical);
|
|
|
|
/**
|
|
* The following methods accept a point of an XPolygon, whereas the neighbouring
|
|
* control points of the actual point are passed in pC1/pC2.
|
|
* Via rSin/rCos, sin(nAngle) and cos(nAngle) are returned.
|
|
*
|
|
* @return the returned angle is in rad
|
|
*/
|
|
double CrookRotateXPoint(Point& rPnt, Point* pC1, Point* pC2, const Point& rCenter,
|
|
const Point& rRad, double& rSin, double& rCos, bool bVert);
|
|
double CrookSlantXPoint(Point& rPnt, Point* pC1, Point* pC2, const Point& rCenter,
|
|
const Point& rRad, double& rSin, double& rCos, bool bVert);
|
|
double CrookStretchXPoint(Point& rPnt, Point* pC1, Point* pC2, const Point& rCenter,
|
|
const Point& rRad, double& rSin, double& rCos, bool bVert,
|
|
const Rectangle& rRefRect);
|
|
|
|
void CrookRotatePoly(XPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert);
|
|
void CrookSlantPoly(XPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert);
|
|
void CrookStretchPoly(XPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert, const Rectangle& rRefRect);
|
|
|
|
void CrookRotatePoly(XPolyPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert);
|
|
void CrookSlantPoly(XPolyPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert);
|
|
void CrookStretchPoly(XPolyPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert, const Rectangle& rRefRect);
|
|
|
|
/**************************************************************************************************/
|
|
/* Inline */
|
|
/**************************************************************************************************/
|
|
|
|
inline void ResizePoint(Point& rPnt, const Point& rRef, Fraction xFact, Fraction yFact)
|
|
{
|
|
if (!xFact.IsValid()) {
|
|
SAL_WARN( "svx.svdraw", "invalid fraction xFact, using Fraction(1,1)" );
|
|
xFact = Fraction(1,1);
|
|
}
|
|
if (!yFact.IsValid()) {
|
|
SAL_WARN( "svx.svdraw", "invalid fraction yFact, using Fraction(1,1)" );
|
|
yFact = Fraction(1,1);
|
|
}
|
|
rPnt.X() = rRef.X() + Round( (rPnt.X() - rRef.X()) * double(xFact) );
|
|
rPnt.Y() = rRef.Y() + Round( (rPnt.Y() - rRef.Y()) * double(yFact) );
|
|
}
|
|
|
|
inline void RotatePoint(Point& rPnt, const Point& rRef, double sn, double cs)
|
|
{
|
|
long dx=rPnt.X()-rRef.X();
|
|
long dy=rPnt.Y()-rRef.Y();
|
|
rPnt.X()=Round(rRef.X()+dx*cs+dy*sn);
|
|
rPnt.Y()=Round(rRef.Y()+dy*cs-dx*sn);
|
|
}
|
|
|
|
inline void ShearPoint(Point& rPnt, const Point& rRef, double tn, bool bVShear)
|
|
{
|
|
if (!bVShear) { // Horizontal
|
|
if (rPnt.Y()!=rRef.Y()) { // else not needed
|
|
rPnt.X()-=Round((rPnt.Y()-rRef.Y())*tn);
|
|
}
|
|
} else { // or else vertical
|
|
if (rPnt.X()!=rRef.X()) { // else not needed
|
|
rPnt.Y()-=Round((rPnt.X()-rRef.X())*tn);
|
|
}
|
|
}
|
|
}
|
|
|
|
inline double GetCrookAngle(Point& rPnt, const Point& rCenter, const Point& rRad, bool bVertical)
|
|
{
|
|
double nAngle;
|
|
if (bVertical) {
|
|
long dy=rPnt.Y()-rCenter.Y();
|
|
nAngle=(double)dy/(double)rRad.Y();
|
|
rPnt.Y()=rCenter.Y();
|
|
} else {
|
|
long dx=rCenter.X()-rPnt.X();
|
|
nAngle=(double)dx/(double)rRad.X();
|
|
rPnt.X()=rCenter.X();
|
|
}
|
|
return nAngle;
|
|
}
|
|
|
|
/**************************************************************************************************/
|
|
/**************************************************************************************************/
|
|
|
|
/**
|
|
* The Y axis points down!
|
|
* The function negates the Y axis, when calculating the angle, such
|
|
* that GetAngle(Point(0,-1))=90 deg.
|
|
* GetAngle(Point(0,0)) returns 0.
|
|
*
|
|
* @return the returned value is in the range of -180.00..179.99 deg
|
|
* and is in 1/100 deg units
|
|
*/
|
|
SVX_DLLPUBLIC long GetAngle(const Point& rPnt);
|
|
|
|
long NormAngle180(long a); /// Normalize angle to -180.00..179.99
|
|
|
|
SVX_DLLPUBLIC long NormAngle360(long a); /// Normalize angle to 0.00..359.99
|
|
|
|
sal_uInt16 GetAngleSector(long nAngle); /// Determine sector within the cartesian coordinate system
|
|
|
|
/**
|
|
* Calculates the length of (0,0) via a^2 + b^2 = c^2
|
|
* In order to avoid overflows, we ignore some decimal places.
|
|
*/
|
|
long GetLen(const Point& rPnt);
|
|
|
|
/**
|
|
* The transformation of a rectangle into a polygon, by
|
|
* using angle parameters from GeoStat. ------------
|
|
* The point of reference is always the Point 0, meaning /1 2/
|
|
* the upper left corner of the initial rectangle. / /
|
|
* When calculating the polygon, the order is first / /
|
|
* shear and then the rotation. / /
|
|
* / / \
|
|
* / / |
|
|
* A) Initial rectangle aRect B) After applying Shear /0 3/ Rot|
|
|
* +------------------+ -------------------- ------------------
|
|
* |0 1| \0 1\ C) After applying Rotate
|
|
* | | \ \
|
|
* | | | \ \
|
|
* |3 2| | \3 2\
|
|
* +------------------+ | --------------------
|
|
* |Shr
|
|
*
|
|
* When converting the polygon back into a rect, the order is necessarily the
|
|
* other way around:
|
|
* - Calculating the rotation angle: angle of the line 0-1 in figure C) to the horizontal
|
|
* - Turning the sheared rect back (we get figure B)
|
|
* - Determining the width of the rect = length of the line 0-1 in figure B)
|
|
* - Determining the height of the rect = vertical distance between the points 0 and 3
|
|
* of figure B)
|
|
* - Determining the shear angle from the line 0-3 to the perpendicular line.
|
|
*
|
|
* We need to keep in mind that the polygon can be mirrored when it was
|
|
* transformed in the mean time (e.g. mirror or resize with negative factor).
|
|
* In that case, we first need to normalize, by swapping points (0 with 3 and 1
|
|
* with 2), so that it has the right orientation.
|
|
*
|
|
* Note: a positive shear angle means a shear with a positive visible curvature
|
|
* on the screen. Mathematically, that would be a negative curvature, as the
|
|
* Y axis runs from top to bottom on the screen.
|
|
* Rotation angle: positive means a visible left rotation.
|
|
*/
|
|
|
|
class GeoStat { // Geometric state for a rect
|
|
public:
|
|
long nRotationAngle;
|
|
long nShearAngle;
|
|
double nTan; // tan(nShearAngle)
|
|
double nSin; // sin(nRotationAngle)
|
|
double nCos; // cos(nRotationAngle)
|
|
bool bMirrored; // Horizontally mirrored? (ni)
|
|
public:
|
|
GeoStat(): nRotationAngle(0),nShearAngle(0),nTan(0.0),nSin(0.0),nCos(1.0),bMirrored(false) {}
|
|
void RecalcSinCos();
|
|
void RecalcTan();
|
|
};
|
|
|
|
tools::Polygon Rect2Poly(const Rectangle& rRect, const GeoStat& rGeo);
|
|
void Poly2Rect(const tools::Polygon& rPol, Rectangle& rRect, GeoStat& rGeo);
|
|
|
|
SVX_DLLPUBLIC void OrthoDistance8(const Point& rPt0, Point& rPt, bool bBigOrtho);
|
|
SVX_DLLPUBLIC void OrthoDistance4(const Point& rPt0, Point& rPt, bool bBigOrtho);
|
|
|
|
// Multiplication and subsequent division
|
|
// Calculation and intermediate values are in BigInt
|
|
SVX_DLLPUBLIC long BigMulDiv(long nVal, long nMul, long nDiv);
|
|
|
|
class FrPair {
|
|
Fraction aX;
|
|
Fraction aY;
|
|
public:
|
|
FrPair() : aX(0,1),aY(0,1) {}
|
|
FrPair(const Fraction& rBoth) : aX(rBoth),aY(rBoth) {}
|
|
FrPair(const Fraction& rX, const Fraction& rY) : aX(rX),aY(rY) {}
|
|
FrPair(long nMul, long nDiv) : aX(nMul,nDiv),aY(nMul,nDiv) {}
|
|
FrPair(long xMul, long xDiv, long yMul, long yDiv): aX(xMul,xDiv),aY(yMul,yDiv) {}
|
|
const Fraction& X() const { return aX; }
|
|
const Fraction& Y() const { return aY; }
|
|
Fraction& X() { return aX; }
|
|
Fraction& Y() { return aY; }
|
|
};
|
|
|
|
// To convert units of measurement
|
|
SVX_DLLPUBLIC FrPair GetMapFactor(MapUnit eS, MapUnit eD);
|
|
FrPair GetMapFactor(FieldUnit eS, FieldUnit eD);
|
|
|
|
inline bool IsMetric(MapUnit eU) {
|
|
return (eU==MAP_100TH_MM || eU==MAP_10TH_MM || eU==MAP_MM || eU==MAP_CM);
|
|
}
|
|
|
|
inline bool IsInch(MapUnit eU) {
|
|
return (eU==MAP_1000TH_INCH || eU==MAP_100TH_INCH || eU==MAP_10TH_INCH || eU==MAP_INCH ||
|
|
eU==MAP_POINT || eU==MAP_TWIP);
|
|
}
|
|
|
|
inline bool IsMetric(FieldUnit eU) {
|
|
return (eU==FUNIT_MM || eU==FUNIT_CM || eU==FUNIT_M || eU==FUNIT_KM || eU==FUNIT_100TH_MM);
|
|
}
|
|
|
|
inline bool IsInch(FieldUnit eU) {
|
|
return (eU==FUNIT_TWIP || eU==FUNIT_POINT || eU==FUNIT_PICA ||
|
|
eU==FUNIT_INCH || eU==FUNIT_FOOT || eU==FUNIT_MILE);
|
|
}
|
|
|
|
class SVX_DLLPUBLIC SdrFormatter {
|
|
long nMul_;
|
|
long nDiv_;
|
|
short nKomma_;
|
|
bool bSrcFU;
|
|
bool bDstFU;
|
|
bool bDirty;
|
|
MapUnit eSrcMU;
|
|
MapUnit eDstMU;
|
|
FieldUnit eSrcFU;
|
|
FieldUnit eDstFU;
|
|
private:
|
|
SVX_DLLPRIVATE void Undirty();
|
|
SVX_DLLPRIVATE void ForceUndirty() const { if (bDirty) const_cast<SdrFormatter*>(this)->Undirty(); }
|
|
public:
|
|
SdrFormatter(MapUnit eSrc, MapUnit eDst)
|
|
: nMul_(0)
|
|
, nDiv_(0)
|
|
, nKomma_(0)
|
|
, bSrcFU(false)
|
|
, bDstFU(false)
|
|
, bDirty(true)
|
|
, eSrcMU(eSrc)
|
|
, eDstMU(eDst)
|
|
, eSrcFU(FUNIT_NONE)
|
|
, eDstFU(FUNIT_NONE)
|
|
{
|
|
}
|
|
SdrFormatter(MapUnit eSrc, FieldUnit eDst) { eSrcMU=eSrc; bSrcFU=false; eDstFU=eDst; bDstFU=true; bDirty=true; }
|
|
SdrFormatter(FieldUnit eSrc, MapUnit eDst) { eSrcFU=eSrc; bSrcFU=true; eDstMU=eDst; bDstFU=false; bDirty=true; }
|
|
SdrFormatter(FieldUnit eSrc, FieldUnit eDst) { eSrcFU=eSrc; bSrcFU=true; eDstFU=eDst; bDstFU=true; bDirty=true; }
|
|
void TakeStr(long nVal, OUString& rStr) const;
|
|
static void TakeUnitStr(MapUnit eUnit, OUString& rStr);
|
|
static void TakeUnitStr(FieldUnit eUnit, OUString& rStr);
|
|
static OUString GetUnitStr(FieldUnit eUnit) { OUString aStr; TakeUnitStr(eUnit,aStr); return aStr; }
|
|
};
|
|
|
|
|
|
|
|
#endif // INCLUDED_SVX_SVDTRANS_HXX
|
|
|
|
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|