office-gobmx/binaryurp/source/unmarshal.cxx
Noel Grandin 14cca2c88f loplugin:ostr in binaryurp
Change-Id: I8fbb3a64cd101f219408103a771e1197e1e69776
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/167203
Tested-by: Jenkins
Reviewed-by: Noel Grandin <noel.grandin@collabora.co.uk>
2024-05-06 19:23:50 +02:00

491 lines
16 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sal/config.h>
#include <cassert>
#include <cstdlib>
#include <new>
#include <utility>
#include <vector>
#include <com/sun/star/io/IOException.hpp>
#include <com/sun/star/uno/RuntimeException.hpp>
#include <com/sun/star/uno/Sequence.hxx>
#include <cppu/unotype.hxx>
#include <rtl/byteseq.hxx>
#include <rtl/ref.hxx>
#include <rtl/textcvt.h>
#include <rtl/textenc.h>
#include <rtl/ustring.h>
#include <rtl/ustring.hxx>
#include <sal/types.h>
#include <typelib/typeclass.h>
#include <typelib/typedescription.h>
#include <typelib/typedescription.hxx>
#include <uno/any2.h>
#include <uno/data.h>
#include <uno/dispatcher.hxx>
#include "binaryany.hxx"
#include "bridge.hxx"
#include "cache.hxx"
#include "readerstate.hxx"
#include "unmarshal.hxx"
namespace binaryurp {
namespace {
void * allocate(sal_Size size) {
void * p = std::malloc(size);
if (p == nullptr) {
throw std::bad_alloc();
}
return p;
}
std::vector< BinaryAny >::iterator copyMemberValues(
css::uno::TypeDescription const & type,
std::vector< BinaryAny >::iterator const & it, void * buffer) noexcept
{
assert(
type.is() &&
(type.get()->eTypeClass == typelib_TypeClass_STRUCT ||
type.get()->eTypeClass == typelib_TypeClass_EXCEPTION) &&
buffer != nullptr);
type.makeComplete();
std::vector< BinaryAny >::iterator i(it);
typelib_CompoundTypeDescription * ctd =
reinterpret_cast< typelib_CompoundTypeDescription * >(type.get());
if (ctd->pBaseTypeDescription != nullptr) {
i = copyMemberValues(
css::uno::TypeDescription(&ctd->pBaseTypeDescription->aBase), i,
buffer);
}
for (sal_Int32 j = 0; j != ctd->nMembers; ++j) {
uno_type_copyData(
static_cast< char * >(buffer) + ctd->pMemberOffsets[j],
i++->getValue(css::uno::TypeDescription(ctd->ppTypeRefs[j])),
ctd->ppTypeRefs[j], nullptr);
}
return i;
}
}
Unmarshal::Unmarshal(
rtl::Reference< Bridge > bridge, ReaderState & state,
css::uno::Sequence< sal_Int8 > const & buffer):
bridge_(std::move(bridge)), state_(state), buffer_(buffer)
{
data_ = reinterpret_cast< sal_uInt8 const * >(buffer_.getConstArray());
end_ = data_ + buffer_.getLength();
}
Unmarshal::~Unmarshal() {}
sal_uInt8 Unmarshal::read8() {
check(1);
return *data_++;
}
sal_uInt16 Unmarshal::read16() {
check(2);
sal_uInt16 n = static_cast< sal_uInt16 >(*data_++) << 8;
return n | *data_++;
}
sal_uInt32 Unmarshal::read32() {
check(4);
sal_uInt32 n = static_cast< sal_uInt32 >(*data_++) << 24;
n |= static_cast< sal_uInt32 >(*data_++) << 16;
n |= static_cast< sal_uInt32 >(*data_++) << 8;
return n | *data_++;
}
css::uno::TypeDescription Unmarshal::readType() {
sal_uInt8 flags = read8();
typelib_TypeClass tc = static_cast< typelib_TypeClass >(flags & 0x7F);
switch (tc) {
case typelib_TypeClass_VOID:
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
case typelib_TypeClass_FLOAT:
case typelib_TypeClass_DOUBLE:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_STRING:
case typelib_TypeClass_TYPE:
case typelib_TypeClass_ANY:
if ((flags & 0x80) != 0) {
throw css::io::IOException(
u"binaryurp::Unmarshal: cache flag of simple type is set"_ustr);
}
return css::uno::TypeDescription(
*typelib_static_type_getByTypeClass(tc));
case typelib_TypeClass_SEQUENCE:
case typelib_TypeClass_ENUM:
case typelib_TypeClass_STRUCT:
case typelib_TypeClass_EXCEPTION:
case typelib_TypeClass_INTERFACE:
{
sal_uInt16 idx = readCacheIndex();
if ((flags & 0x80) == 0) {
if (idx == cache::ignore || !state_.typeCache[idx].is()) {
throw css::io::IOException(
u"binaryurp::Unmarshal: unknown type cache index"_ustr);
}
return state_.typeCache[idx];
} else {
OUString const str(readString());
css::uno::TypeDescription t(str);
if (!t.is() || t.get()->eTypeClass != tc) {
throw css::io::IOException(
"binaryurp::Unmarshal: type with unknown name: " + str);
}
for (css::uno::TypeDescription t2(t);
t2.get()->eTypeClass == typelib_TypeClass_SEQUENCE;)
{
t2.makeComplete();
t2 = css::uno::TypeDescription(
reinterpret_cast< typelib_IndirectTypeDescription * >(
t2.get())->pType);
if (!t2.is()) {
throw css::io::IOException(
u"binaryurp::Unmarshal: sequence type with unknown"
" component type"_ustr);
}
switch (t2.get()->eTypeClass) {
case typelib_TypeClass_VOID:
case typelib_TypeClass_EXCEPTION:
throw css::io::IOException(
u"binaryurp::Unmarshal: sequence type with bad"
" component type"_ustr);
default:
break;
}
}
if (idx != cache::ignore) {
state_.typeCache[idx] = t;
}
return t;
}
}
default:
throw css::io::IOException(
u"binaryurp::Unmarshal: type of unknown type class"_ustr);
}
}
OUString Unmarshal::readOid() {
OUString oid(readString());
for (sal_Int32 i = 0; i != oid.getLength(); ++i) {
if (oid[i] > 0x7F) {
throw css::io::IOException(
u"binaryurp::Unmarshal: OID contains non-ASCII character"_ustr);
}
}
sal_uInt16 idx = readCacheIndex();
if (oid.isEmpty() && idx != cache::ignore) {
if (state_.oidCache[idx].isEmpty()) {
throw css::io::IOException(
u"binaryurp::Unmarshal: unknown OID cache index"_ustr);
}
return state_.oidCache[idx];
}
if (idx != cache::ignore) {
state_.oidCache[idx] = oid;
}
return oid;
}
rtl::ByteSequence Unmarshal::readTid() {
rtl::ByteSequence tid(
*static_cast< sal_Sequence * const * >(
readSequence(
css::uno::TypeDescription(
cppu::UnoType< css::uno::Sequence< sal_Int8 > >::get())).
getValue(
css::uno::TypeDescription(
cppu::UnoType< css::uno::Sequence< sal_Int8 > >::get()))));
sal_uInt16 idx = readCacheIndex();
if (tid.getLength() == 0) {
if (idx == cache::ignore || state_.tidCache[idx].getLength() == 0) {
throw css::io::IOException(
u"binaryurp::Unmarshal: unknown TID cache index"_ustr);
}
return state_.tidCache[idx];
}
if (idx != cache::ignore) {
state_.tidCache[idx] = tid;
}
return tid;
}
BinaryAny Unmarshal::readValue(css::uno::TypeDescription const & type) {
assert(type.is());
switch (type.get()->eTypeClass) {
default:
std::abort(); // this cannot happen
// pseudo fall-through to avoid compiler warnings
case typelib_TypeClass_VOID:
return BinaryAny();
case typelib_TypeClass_BOOLEAN:
{
sal_uInt8 v = read8();
if (v > 1) {
throw css::io::IOException(
u"binaryurp::Unmarshal: boolean of unknown value"_ustr);
}
return BinaryAny(type, &v);
}
case typelib_TypeClass_BYTE:
{
sal_uInt8 v = read8();
return BinaryAny(type, &v);
}
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
case typelib_TypeClass_CHAR:
{
sal_uInt16 v = read16();
return BinaryAny(type, &v);
}
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_FLOAT:
{
sal_uInt32 v = read32();
return BinaryAny(type, &v);
}
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
case typelib_TypeClass_DOUBLE:
{
sal_uInt64 v = read64();
return BinaryAny(type, &v);
}
case typelib_TypeClass_STRING:
{
OUString v(readString());
return BinaryAny(type, &v.pData);
}
case typelib_TypeClass_TYPE:
{
css::uno::TypeDescription v(readType());
typelib_TypeDescription * p = v.get();
return BinaryAny(type, &p);
}
case typelib_TypeClass_ANY:
{
css::uno::TypeDescription t(readType());
if (t.get()->eTypeClass == typelib_TypeClass_ANY) {
throw css::io::IOException(
u"binaryurp::Unmarshal: any of type ANY"_ustr);
}
return readValue(t);
}
case typelib_TypeClass_SEQUENCE:
type.makeComplete();
return readSequence(type);
case typelib_TypeClass_ENUM:
{
sal_Int32 v = static_cast< sal_Int32 >(read32());
type.makeComplete();
typelib_EnumTypeDescription * etd =
reinterpret_cast< typelib_EnumTypeDescription * >(type.get());
bool bFound = false;
for (sal_Int32 i = 0; i != etd->nEnumValues; ++i) {
if (etd->pEnumValues[i] == v) {
bFound = true;
break;
}
}
if (!bFound) {
throw css::io::IOException(
u"binaryurp::Unmarshal: unknown enum value"_ustr);
}
return BinaryAny(type, &v);
}
case typelib_TypeClass_STRUCT:
case typelib_TypeClass_EXCEPTION:
{
std::vector< BinaryAny > as;
readMemberValues(type, &as);
void * buf = allocate(type.get()->nSize);
copyMemberValues(type, as.begin(), buf);
uno_Any raw;
raw.pType = reinterpret_cast< typelib_TypeDescriptionReference * >(
type.get());
raw.pData = buf;
raw.pReserved = nullptr;
return BinaryAny(raw);
}
case typelib_TypeClass_INTERFACE:
{
css::uno::UnoInterfaceReference obj(
bridge_->registerIncomingInterface(readOid(), type));
return BinaryAny(type, &obj.m_pUnoI);
}
}
}
void Unmarshal::done() const {
if (data_ != end_) {
throw css::io::IOException(
u"binaryurp::Unmarshal: block contains excess data"_ustr);
}
}
void Unmarshal::check(sal_Int32 size) const {
if (end_ - data_ < size) {
throw css::io::IOException(
u"binaryurp::Unmarshal: trying to read past end of block"_ustr);
}
}
sal_uInt32 Unmarshal::readCompressed() {
sal_uInt8 n = read8();
return n == 0xFF ? read32() : n;
}
sal_uInt16 Unmarshal::readCacheIndex() {
sal_uInt16 idx = read16();
if (idx >= cache::size && idx != cache::ignore) {
throw css::io::IOException(
u"binaryurp::Unmarshal: cache index out of range"_ustr);
}
return idx;
}
sal_uInt64 Unmarshal::read64() {
check(8);
sal_uInt64 n = static_cast< sal_uInt64 >(*data_++) << 56;
n |= static_cast< sal_uInt64 >(*data_++) << 48;
n |= static_cast< sal_uInt64 >(*data_++) << 40;
n |= static_cast< sal_uInt64 >(*data_++) << 32;
n |= static_cast< sal_uInt64 >(*data_++) << 24;
n |= static_cast< sal_uInt64 >(*data_++) << 16;
n |= static_cast< sal_uInt64 >(*data_++) << 8;
return n | *data_++;
}
OUString Unmarshal::readString() {
sal_uInt32 n = readCompressed();
if (n > SAL_MAX_INT32) {
throw css::uno::RuntimeException(
u"binaryurp::Unmarshal: string size too large"_ustr);
}
check(static_cast< sal_Int32 >(n));
OUString s;
if (!rtl_convertStringToUString(
&s.pData, reinterpret_cast< char const * >(data_),
static_cast< sal_Int32 >(n), RTL_TEXTENCODING_UTF8,
(RTL_TEXTTOUNICODE_FLAGS_UNDEFINED_ERROR |
RTL_TEXTTOUNICODE_FLAGS_MBUNDEFINED_ERROR |
RTL_TEXTTOUNICODE_FLAGS_INVALID_ERROR)))
{
throw css::io::IOException(
u"binaryurp::Unmarshal: string does not contain UTF-8"_ustr);
}
data_ += n;
return s;
}
BinaryAny Unmarshal::readSequence(css::uno::TypeDescription const & type) {
assert(type.is() && type.get()->eTypeClass == typelib_TypeClass_SEQUENCE);
sal_uInt32 n = readCompressed();
if (n > SAL_MAX_INT32) {
throw css::uno::RuntimeException(
u"binaryurp::Unmarshal: sequence size too large"_ustr);
}
if (n == 0) {
return BinaryAny(type, nullptr);
}
css::uno::TypeDescription ctd(
reinterpret_cast< typelib_IndirectTypeDescription * >(
type.get())->pType);
if (ctd.get()->eTypeClass == typelib_TypeClass_BYTE) {
check(static_cast< sal_Int32 >(n));
rtl::ByteSequence s(
reinterpret_cast< sal_Int8 const * >(data_),
static_cast< sal_Int32 >(n));
data_ += n;
sal_Sequence * p = s.getHandle();
return BinaryAny(type, &p);
}
std::vector< BinaryAny > as;
as.reserve(n);
for (sal_uInt32 i = 0; i != n; ++i) {
as.push_back(readValue(ctd));
}
assert(ctd.get()->nSize >= 0);
sal_uInt64 size = static_cast< sal_uInt64 >(n) *
static_cast< sal_uInt64 >(ctd.get()->nSize);
// sal_uInt32 * sal_Int32 -> sal_uInt64 cannot overflow
if (size > SAL_MAX_SIZE - SAL_SEQUENCE_HEADER_SIZE) {
throw css::uno::RuntimeException(
u"binaryurp::Unmarshal: sequence size too large"_ustr);
}
void * buf = allocate(
SAL_SEQUENCE_HEADER_SIZE + static_cast< sal_Size >(size));
static_cast< sal_Sequence * >(buf)->nRefCount = 0;
static_cast< sal_Sequence * >(buf)->nElements =
static_cast< sal_Int32 >(n);
for (sal_uInt32 i = 0; i != n; ++i) {
uno_copyData(
static_cast< sal_Sequence * >(buf)->elements + i * ctd.get()->nSize,
as[i].getValue(ctd), ctd.get(), nullptr);
}
return BinaryAny(type, &buf);
}
void Unmarshal::readMemberValues(
css::uno::TypeDescription const & type, std::vector< BinaryAny > * values)
{
assert(
type.is() &&
(type.get()->eTypeClass == typelib_TypeClass_STRUCT ||
type.get()->eTypeClass == typelib_TypeClass_EXCEPTION) &&
values != nullptr);
type.makeComplete();
typelib_CompoundTypeDescription * ctd =
reinterpret_cast< typelib_CompoundTypeDescription * >(type.get());
if (ctd->pBaseTypeDescription != nullptr) {
readMemberValues(
css::uno::TypeDescription(&ctd->pBaseTypeDescription->aBase),
values);
}
values->reserve(values->size() + ctd->nMembers);
for (sal_Int32 i = 0; i != ctd->nMembers; ++i) {
values->push_back(
readValue(css::uno::TypeDescription(ctd->ppTypeRefs[i])));
}
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */