office-gobmx/agg/inc/agg_conv_curve.h
Vladimir Glazounov 0176181fee INTEGRATION: CWS pj65 (1.1.20); FILE MERGED
2006/10/31 12:41:19 pjanik 1.1.20.1: #i71027#: prevent warnings on Mac OS X with gcc 4.0.1.
2006-11-21 16:30:04 +00:00

174 lines
5.8 KiB
C++
Executable file

//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.3
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// classes conv_curve
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_CURVE_INCLUDED
#define AGG_CONV_CURVE_INCLUDED
#include "agg_basics.h"
#include "agg_curves.h"
namespace agg
{
//---------------------------------------------------------------conv_curve
// Curve converter class. Any path storage can have Bezier curves defined
// by their control points. There're two types of curves supported: curve3
// and curve4. Curve3 is a conic Bezier curve with 2 endpoints and 1 control
// point. Curve4 has 2 control points (4 points in total) and can be used
// to interpolate more complicated curves. Curve4, unlike curve3 can be used
// to approximate arcs, both curcular and elliptical. Curves are approximated
// with straight lines and one of the approaches is just to store the whole
// sequence of vertices that approximate our curve. It takes additional
// memory, and at the same time the consecutive vertices can be calculated
// on demand.
//
// Initially, path storages are not suppose to keep all the vertices of the
// curves (although, nothig prevents us from doing so). Instead, path_storage
// keeps only vertices, needed to calculate a curve on demand. Those vertices
// are marked with special commands. So, if the path_storage contains curves
// (which are not real curves yet), and we render this storage directly,
// all we will see is only 2 or 3 straight line segments (for curve3 and
// curve4 respectively). If we need to see real curves drawn we need to
// include this class into the conversion pipeline.
//
// Class conv_curve recognizes commands path_cmd_curve3 and path_cmd_curve4
// and converts these vertices into a move_to/line_to sequence.
//-----------------------------------------------------------------------
template<class VertexSource> class conv_curve
{
public:
conv_curve(VertexSource& source) :
m_source(&source), m_last_x(0.0), m_last_y(0.0) {}
void set_source(VertexSource& source) { m_source = &source; }
void approximation_scale(double s)
{
m_curve3.approximation_scale(s);
m_curve4.approximation_scale(s);
}
double approximation_scale() const
{
return m_curve3.approximation_scale();
}
void rewind(unsigned id);
unsigned vertex(double* x, double* y);
typedef conv_curve<VertexSource> source_type;
typedef vertex_iterator<source_type> iterator;
iterator begin(unsigned id) { return iterator(*this, id); }
iterator end() { return iterator(path_cmd_stop); }
private:
conv_curve(const conv_curve<VertexSource>&);
const conv_curve<VertexSource>&
operator = (const conv_curve<VertexSource>&);
VertexSource* m_source;
double m_last_x;
double m_last_y;
curve3 m_curve3;
curve4 m_curve4;
};
//------------------------------------------------------------------------
template<class VertexSource>
void conv_curve<VertexSource>::rewind(unsigned id)
{
m_source->rewind(id);
m_last_x = 0.0;
m_last_y = 0.0;
m_curve3.reset();
m_curve4.reset();
}
//------------------------------------------------------------------------
template<class VertexSource>
unsigned conv_curve<VertexSource>::vertex(double* x, double* y)
{
if(!is_stop(m_curve3.vertex(x, y)))
{
m_last_x = *x;
m_last_y = *y;
return path_cmd_line_to;
}
if(!is_stop(m_curve4.vertex(x, y)))
{
m_last_x = *x;
m_last_y = *y;
return path_cmd_line_to;
}
double ct2_x = 0;
double ct2_y = 0;
double end_x = 0;
double end_y = 0;
unsigned cmd = m_source->vertex(x, y);
switch(cmd)
{
case path_cmd_move_to:
case path_cmd_line_to:
m_last_x = *x;
m_last_y = *y;
default:
break;
case path_cmd_curve3:
m_source->vertex(&end_x, &end_y);
m_curve3.init(m_last_x, m_last_y,
*x, *y,
end_x, end_y);
m_curve3.vertex(x, y); // First call returns path_cmd_move_to
m_curve3.vertex(x, y); // This is the first vertex of the curve
cmd = path_cmd_line_to;
break;
case path_cmd_curve4:
m_source->vertex(&ct2_x, &ct2_y);
m_source->vertex(&end_x, &end_y);
m_curve4.init(m_last_x, m_last_y,
*x, *y,
ct2_x, ct2_y,
end_x, end_y);
m_curve4.vertex(x, y); // First call returns path_cmd_move_to
m_curve4.vertex(x, y); // This is the first vertex of the curve
cmd = path_cmd_line_to;
break;
}
return cmd;
}
}
#endif