office-gobmx/agg/inc/agg_math_stroke.h

340 lines
11 KiB
C++
Executable file

//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.3
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Stroke math
//
//----------------------------------------------------------------------------
#ifndef AGG_STROKE_MATH_INCLUDED
#define AGG_STROKE_MATH_INCLUDED
#include "agg_math.h"
#include "agg_vertex_sequence.h"
namespace agg
{
//-------------------------------------------------------------line_cap_e
enum line_cap_e
{
butt_cap,
square_cap,
round_cap
};
//------------------------------------------------------------line_join_e
enum line_join_e
{
miter_join,
miter_join_revert,
round_join,
bevel_join
};
// Minimal angle to calculate round joins, less than 0.1 degree.
const double stroke_theta = 0.001; //----stroke_theta
//--------------------------------------------------------stroke_calc_arc
template<class VertexConsumer>
void stroke_calc_arc(VertexConsumer& out_vertices,
double x, double y,
double dx1, double dy1,
double dx2, double dy2,
double width,
double approximation_scale)
{
typedef typename VertexConsumer::value_type coord_type;
//// Check if we actually need the arc (this optimization works bad)
////-----------------
//double dd = calc_distance(dx1, dy1, dx2, dy2);
//if(dd < 1.0/approximation_scale)
//{
// out_vertices.add(coord_type(x + dx1, y + dy1));
// if(dd > 0.25/approximation_scale)
// {
// out_vertices.add(coord_type(x + dx2, y + dy2));
// }
// return;
//}
double a1 = atan2(dy1, dx1);
double a2 = atan2(dy2, dx2);
double da = a1 - a2;
if(fabs(da) < stroke_theta)
{
out_vertices.add(coord_type((x + x + dx1 + dx2) * 0.5,
(y + y + dy1 + dy2) * 0.5));
return;
}
bool ccw = da > 0.0 && da < pi;
if(width < 0) width = -width;
da = fabs(1.0 / (width * approximation_scale));
if(!ccw)
{
if(a1 > a2) a2 += 2 * pi;
while(a1 < a2)
{
out_vertices.add(coord_type(x + cos(a1) * width, y + sin(a1) * width));
a1 += da;
}
}
else
{
if(a1 < a2) a2 -= 2 * pi;
while(a1 > a2)
{
out_vertices.add(coord_type(x + cos(a1) * width, y + sin(a1) * width));
a1 -= da;
}
}
out_vertices.add(coord_type(x + dx2, y + dy2));
}
//-------------------------------------------------------stroke_calc_miter
template<class VertexConsumer>
void stroke_calc_miter(VertexConsumer& out_vertices,
const vertex_dist& v0,
const vertex_dist& v1,
const vertex_dist& v2,
double dx1, double dy1,
double dx2, double dy2,
double width,
bool revert_flag,
double miter_limit)
{
typedef typename VertexConsumer::value_type coord_type;
double xi = v1.x;
double yi = v1.y;
if(!calc_intersection(v0.x + dx1, v0.y - dy1,
v1.x + dx1, v1.y - dy1,
v1.x + dx2, v1.y - dy2,
v2.x + dx2, v2.y - dy2,
&xi, &yi))
{
// The calculation didn't succeed, most probaly
// the three points lie one straight line
//----------------
if(calc_distance(dx1, -dy1, dx2, -dy2) < width * 0.025)
{
// This case means that the next segment continues
// the previous one (straight line)
//-----------------
out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1));
}
else
{
// This case means that the next segment goes back
//-----------------
if(revert_flag)
{
out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1));
out_vertices.add(coord_type(v1.x + dx2, v1.y - dy2));
}
else
{
// If no miter-revert, calcuate new dx1, dy1, dx2, dy2
out_vertices.add(coord_type(v1.x + dx1 + dy1 * miter_limit,
v1.y - dy1 + dx1 * miter_limit));
out_vertices.add(coord_type(v1.x + dx2 - dy2 * miter_limit,
v1.y - dy2 - dx2 * miter_limit));
}
}
}
else
{
double d1 = calc_distance(v1.x, v1.y, xi, yi);
double lim = width * miter_limit;
if(d1 > lim)
{
// Miter limit exceeded
//------------------------
if(revert_flag)
{
// For the compatibility with SVG, PDF, etc,
// we use a simple bevel join instead of
// "smart" bevel
//-------------------
out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1));
out_vertices.add(coord_type(v1.x + dx2, v1.y - dy2));
}
else
{
// Smart bevel that cuts the miter at the limit point
//-------------------
d1 = lim / d1;
double x1 = v1.x + dx1;
double y1 = v1.y - dy1;
double x2 = v1.x + dx2;
double y2 = v1.y - dy2;
x1 += (xi - x1) * d1;
y1 += (yi - y1) * d1;
x2 += (xi - x2) * d1;
y2 += (yi - y2) * d1;
out_vertices.add(coord_type(x1, y1));
out_vertices.add(coord_type(x2, y2));
}
}
else
{
// Inside the miter limit
//---------------------
out_vertices.add(coord_type(xi, yi));
}
}
}
//--------------------------------------------------------stroke_calc_cap
template<class VertexConsumer>
void stroke_calc_cap(VertexConsumer& out_vertices,
const vertex_dist& v0,
const vertex_dist& v1,
double len,
line_cap_e line_cap,
double width,
double approximation_scale)
{
typedef typename VertexConsumer::value_type coord_type;
out_vertices.remove_all();
double dx1 = width * (v1.y - v0.y) / len;
double dy1 = width * (v1.x - v0.x) / len;
double dx2 = 0;
double dy2 = 0;
if(line_cap == square_cap)
{
dx2 = dy1;
dy2 = dx1;
}
if(line_cap == round_cap)
{
double a1 = atan2(dy1, -dx1);
double a2 = a1 + pi;
double da = fabs(1.0 / (width * approximation_scale));
while(a1 < a2)
{
out_vertices.add(coord_type(v0.x + cos(a1) * width,
v0.y + sin(a1) * width));
a1 += da;
}
out_vertices.add(coord_type(v0.x + dx1, v0.y - dy1));
}
else
{
out_vertices.add(coord_type(v0.x - dx1 - dx2, v0.y + dy1 - dy2));
out_vertices.add(coord_type(v0.x + dx1 - dx2, v0.y - dy1 - dy2));
}
}
//-------------------------------------------------------stroke_calc_join
template<class VertexConsumer>
void stroke_calc_join(VertexConsumer& out_vertices,
const vertex_dist& v0,
const vertex_dist& v1,
const vertex_dist& v2,
double len1,
double len2,
double width,
line_join_e line_join,
line_join_e inner_line_join,
double miter_limit,
double inner_miter_limit,
double approximation_scale)
{
typedef typename VertexConsumer::value_type coord_type;
double dx1, dy1, dx2, dy2;
dx1 = width * (v1.y - v0.y) / len1;
dy1 = width * (v1.x - v0.x) / len1;
dx2 = width * (v2.y - v1.y) / len2;
dy2 = width * (v2.x - v1.x) / len2;
out_vertices.remove_all();
if(calc_point_location(v0.x, v0.y, v1.x, v1.y, v2.x, v2.y) > 0.0)
{
// Inner join
//---------------
stroke_calc_miter(out_vertices,
v0, v1, v2, dx1, dy1, dx2, dy2,
width,
inner_line_join == miter_join_revert,
inner_miter_limit);
}
else
{
// Outer join
//---------------
switch(line_join)
{
case miter_join:
stroke_calc_miter(out_vertices,
v0, v1, v2, dx1, dy1, dx2, dy2,
width,
false,
miter_limit);
break;
case miter_join_revert:
stroke_calc_miter(out_vertices,
v0, v1, v2, dx1, dy1, dx2, dy2,
width,
true,
miter_limit);
break;
case round_join:
stroke_calc_arc(out_vertices,
v1.x, v1.y, dx1, -dy1, dx2, -dy2,
width, approximation_scale);
break;
default: // Bevel join
out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1));
if(calc_distance(dx1, dy1, dx2, dy2) > approximation_scale * 0.25)
{
out_vertices.add(coord_type(v1.x + dx2, v1.y - dy2));
}
break;
}
}
}
}
#endif