728 lines
31 KiB
C++
728 lines
31 KiB
C++
/*************************************************************************
|
|
*
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* Copyright 2008 by Sun Microsystems, Inc.
|
|
*
|
|
* OpenOffice.org - a multi-platform office productivity suite
|
|
*
|
|
* $RCSfile: b2dlinegeometry.cxx,v $
|
|
* $Revision: 1.7 $
|
|
*
|
|
* This file is part of OpenOffice.org.
|
|
*
|
|
* OpenOffice.org is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License version 3
|
|
* only, as published by the Free Software Foundation.
|
|
*
|
|
* OpenOffice.org is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License version 3 for more details
|
|
* (a copy is included in the LICENSE file that accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* version 3 along with OpenOffice.org. If not, see
|
|
* <http://www.openoffice.org/license.html>
|
|
* for a copy of the LGPLv3 License.
|
|
*
|
|
************************************************************************/
|
|
|
|
// MARKER(update_precomp.py): autogen include statement, do not remove
|
|
#include "precompiled_basegfx.hxx"
|
|
#include <cstdio>
|
|
#include <osl/diagnose.h>
|
|
#include <basegfx/polygon/b2dlinegeometry.hxx>
|
|
#include <basegfx/point/b2dpoint.hxx>
|
|
#include <basegfx/vector/b2dvector.hxx>
|
|
#include <basegfx/polygon/b2dpolygontools.hxx>
|
|
#include <basegfx/polygon/b2dpolypolygontools.hxx>
|
|
#include <basegfx/range/b2drange.hxx>
|
|
#include <basegfx/matrix/b2dhommatrix.hxx>
|
|
#include <basegfx/curve/b2dcubicbezier.hxx>
|
|
#include <basegfx/matrix/b2dhommatrixtools.hxx>
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace basegfx
|
|
{
|
|
namespace tools
|
|
{
|
|
B2DPolyPolygon createAreaGeometryForLineStartEnd(
|
|
const B2DPolygon& rCandidate,
|
|
const B2DPolyPolygon& rArrow,
|
|
bool bStart,
|
|
double fWidth,
|
|
double fCandidateLength,
|
|
double fDockingPosition, // 0->top, 1->bottom
|
|
double* pConsumedLength)
|
|
{
|
|
B2DPolyPolygon aRetval;
|
|
OSL_ENSURE(rCandidate.count() > 1L, "createAreaGeometryForLineStartEnd: Line polygon has too less points (!)");
|
|
OSL_ENSURE(rArrow.count() > 0L, "createAreaGeometryForLineStartEnd: Empty arrow PolyPolygon (!)");
|
|
OSL_ENSURE(fWidth > 0.0, "createAreaGeometryForLineStartEnd: Width too small (!)");
|
|
OSL_ENSURE(fDockingPosition >= 0.0 && fDockingPosition <= 1.0,
|
|
"createAreaGeometryForLineStartEnd: fDockingPosition out of range [0.0 .. 1.0] (!)");
|
|
|
|
if(fWidth < 0.0)
|
|
{
|
|
fWidth = -fWidth;
|
|
}
|
|
|
|
if(rCandidate.count() > 1 && rArrow.count() && !fTools::equalZero(fWidth))
|
|
{
|
|
if(fDockingPosition < 0.0)
|
|
{
|
|
fDockingPosition = 0.0;
|
|
}
|
|
else if(fDockingPosition > 1.0)
|
|
{
|
|
fDockingPosition = 1.0;
|
|
}
|
|
|
|
// init return value from arrow
|
|
aRetval.append(rArrow);
|
|
|
|
// get size of the arrow
|
|
const B2DRange aArrowSize(getRange(rArrow));
|
|
|
|
// build ArrowTransform; center in X, align with axis in Y
|
|
B2DHomMatrix aArrowTransform(basegfx::tools::createTranslateB2DHomMatrix(
|
|
-aArrowSize.getCenter().getX(), -aArrowSize.getMinimum().getY()));
|
|
|
|
// scale to target size
|
|
const double fArrowScale(fWidth / (aArrowSize.getRange().getX()));
|
|
aArrowTransform.scale(fArrowScale, fArrowScale);
|
|
|
|
// get arrow size in Y
|
|
B2DPoint aUpperCenter(aArrowSize.getCenter().getX(), aArrowSize.getMaximum().getY());
|
|
aUpperCenter *= aArrowTransform;
|
|
const double fArrowYLength(B2DVector(aUpperCenter).getLength());
|
|
|
|
// move arrow to have docking position centered
|
|
aArrowTransform.translate(0.0, -fArrowYLength * fDockingPosition);
|
|
|
|
// prepare polygon length
|
|
if(fTools::equalZero(fCandidateLength))
|
|
{
|
|
fCandidateLength = getLength(rCandidate);
|
|
}
|
|
|
|
// get the polygon vector we want to plant this arrow on
|
|
const double fConsumedLength(fArrowYLength * (1.0 - fDockingPosition));
|
|
const B2DVector aHead(rCandidate.getB2DPoint((bStart) ? 0L : rCandidate.count() - 1L));
|
|
const B2DVector aTail(getPositionAbsolute(rCandidate,
|
|
(bStart) ? fConsumedLength : fCandidateLength - fConsumedLength, fCandidateLength));
|
|
|
|
// from that vector, take the needed rotation and add rotate for arrow to transformation
|
|
const B2DVector aTargetDirection(aHead - aTail);
|
|
const double fRotation(atan2(aTargetDirection.getY(), aTargetDirection.getX()) + (90.0 * F_PI180));
|
|
|
|
// rotate around docking position
|
|
aArrowTransform.rotate(fRotation);
|
|
|
|
// move arrow docking position to polygon head
|
|
aArrowTransform.translate(aHead.getX(), aHead.getY());
|
|
|
|
// transform retval and close
|
|
aRetval.transform(aArrowTransform);
|
|
aRetval.setClosed(true);
|
|
|
|
// if pConsumedLength is asked for, fill it
|
|
if(pConsumedLength)
|
|
{
|
|
*pConsumedLength = fConsumedLength;
|
|
}
|
|
}
|
|
|
|
return aRetval;
|
|
}
|
|
} // end of namespace tools
|
|
} // end of namespace basegfx
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace basegfx
|
|
{
|
|
// anonymus namespace for local helpers
|
|
namespace
|
|
{
|
|
bool impIsSimpleEdge(const B2DCubicBezier& rCandidate, double fMaxCosQuad, double fMaxPartOfEdgeQuad)
|
|
{
|
|
// isBezier() is true, already tested by caller
|
|
const B2DVector aEdge(rCandidate.getEndPoint() - rCandidate.getStartPoint());
|
|
|
|
if(aEdge.equalZero())
|
|
{
|
|
// start and end point the same, but control vectors used -> baloon curve loop
|
|
// is not a simple edge
|
|
return false;
|
|
}
|
|
|
|
// get tangentA and scalar with edge
|
|
const B2DVector aTangentA(rCandidate.getTangent(0.0));
|
|
const double fScalarAE(aEdge.scalar(aTangentA));
|
|
|
|
if(fTools::lessOrEqual(fScalarAE, 0.0))
|
|
{
|
|
// angle between TangentA and Edge is bigger or equal 90 degrees
|
|
return false;
|
|
}
|
|
|
|
// get self-scalars for E and A
|
|
const double fScalarE(aEdge.scalar(aEdge));
|
|
const double fScalarA(aTangentA.scalar(aTangentA));
|
|
const double fLengthCompareE(fScalarE * fMaxPartOfEdgeQuad);
|
|
|
|
if(fTools::moreOrEqual(fScalarA, fLengthCompareE))
|
|
{
|
|
// length of TangentA is more than fMaxPartOfEdge of length of edge
|
|
return false;
|
|
}
|
|
|
|
if(fTools::lessOrEqual(fScalarAE * fScalarAE, fScalarA * fScalarE * fMaxCosQuad))
|
|
{
|
|
// angle between TangentA and Edge is bigger or equal angle defined by fMaxCos
|
|
return false;
|
|
}
|
|
|
|
// get tangentB and scalar with edge
|
|
const B2DVector aTangentB(rCandidate.getTangent(1.0));
|
|
const double fScalarBE(aEdge.scalar(aTangentB));
|
|
|
|
if(fTools::lessOrEqual(fScalarBE, 0.0))
|
|
{
|
|
// angle between TangentB and Edge is bigger or equal 90 degrees
|
|
return false;
|
|
}
|
|
|
|
// get self-scalar for B
|
|
const double fScalarB(aTangentB.scalar(aTangentB));
|
|
|
|
if(fTools::moreOrEqual(fScalarB, fLengthCompareE))
|
|
{
|
|
// length of TangentB is more than fMaxPartOfEdge of length of edge
|
|
return false;
|
|
}
|
|
|
|
if(fTools::lessOrEqual(fScalarBE * fScalarBE, fScalarB * fScalarE * fMaxCosQuad))
|
|
{
|
|
// angle between TangentB and Edge is bigger or equal defined by fMaxCos
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void impSubdivideToSimple(const B2DCubicBezier& rCandidate, B2DPolygon& rTarget, double fMaxCosQuad, double fMaxPartOfEdgeQuad, sal_uInt32 nMaxRecursionDepth)
|
|
{
|
|
if(!nMaxRecursionDepth || impIsSimpleEdge(rCandidate, fMaxCosQuad, fMaxPartOfEdgeQuad))
|
|
{
|
|
rTarget.appendBezierSegment(rCandidate.getControlPointA(), rCandidate.getControlPointB(), rCandidate.getEndPoint());
|
|
}
|
|
else
|
|
{
|
|
B2DCubicBezier aLeft, aRight;
|
|
rCandidate.split(0.5, &aLeft, &aRight);
|
|
|
|
impSubdivideToSimple(aLeft, rTarget, fMaxCosQuad, fMaxPartOfEdgeQuad, nMaxRecursionDepth - 1);
|
|
impSubdivideToSimple(aRight, rTarget, fMaxCosQuad, fMaxPartOfEdgeQuad, nMaxRecursionDepth - 1);
|
|
}
|
|
}
|
|
|
|
B2DPolygon subdivideToSimple(const B2DPolygon& rCandidate, double fMaxCosQuad, double fMaxPartOfEdgeQuad)
|
|
{
|
|
const sal_uInt32 nPointCount(rCandidate.count());
|
|
|
|
if(rCandidate.areControlPointsUsed() && nPointCount)
|
|
{
|
|
const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1);
|
|
B2DPolygon aRetval;
|
|
B2DCubicBezier aEdge;
|
|
|
|
// prepare edge for loop
|
|
aEdge.setStartPoint(rCandidate.getB2DPoint(0));
|
|
aRetval.append(aEdge.getStartPoint());
|
|
|
|
for(sal_uInt32 a(0); a < nEdgeCount; a++)
|
|
{
|
|
// fill B2DCubicBezier
|
|
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
|
|
aEdge.setControlPointA(rCandidate.getNextControlPoint(a));
|
|
aEdge.setControlPointB(rCandidate.getPrevControlPoint(nNextIndex));
|
|
aEdge.setEndPoint(rCandidate.getB2DPoint(nNextIndex));
|
|
|
|
// get rid of unnecessary bezier segments
|
|
aEdge.testAndSolveTrivialBezier();
|
|
|
|
if(aEdge.isBezier())
|
|
{
|
|
// before splitting recursively with internal simple criteria, use
|
|
// ExtremumPosFinder to remove those
|
|
::std::vector< double > aExtremumPositions;
|
|
|
|
aExtremumPositions.reserve(4);
|
|
aEdge.getAllExtremumPositions(aExtremumPositions);
|
|
|
|
const sal_uInt32 nCount(aExtremumPositions.size());
|
|
|
|
if(nCount)
|
|
{
|
|
if(nCount > 1)
|
|
{
|
|
// create order from left to right
|
|
::std::sort(aExtremumPositions.begin(), aExtremumPositions.end());
|
|
}
|
|
|
|
for(sal_uInt32 b(0); b < nCount;)
|
|
{
|
|
// split aEdge at next split pos
|
|
B2DCubicBezier aLeft;
|
|
const double fSplitPos(aExtremumPositions[b++]);
|
|
|
|
aEdge.split(fSplitPos, &aLeft, &aEdge);
|
|
aLeft.testAndSolveTrivialBezier();
|
|
|
|
// consume left part
|
|
if(aLeft.isBezier())
|
|
{
|
|
impSubdivideToSimple(aLeft, aRetval, fMaxCosQuad, fMaxPartOfEdgeQuad, 6);
|
|
}
|
|
else
|
|
{
|
|
aRetval.append(aLeft.getEndPoint());
|
|
}
|
|
|
|
if(b < nCount)
|
|
{
|
|
// correct the remaining split positions to fit to shortened aEdge
|
|
const double fScaleFactor(1.0 / (1.0 - fSplitPos));
|
|
|
|
for(sal_uInt32 c(b); c < nCount; c++)
|
|
{
|
|
aExtremumPositions[c] = (aExtremumPositions[c] - fSplitPos) * fScaleFactor;
|
|
}
|
|
}
|
|
}
|
|
|
|
// test the shortened rest of aEdge
|
|
aEdge.testAndSolveTrivialBezier();
|
|
|
|
// consume right part
|
|
if(aEdge.isBezier())
|
|
{
|
|
impSubdivideToSimple(aEdge, aRetval, fMaxCosQuad, fMaxPartOfEdgeQuad, 6);
|
|
}
|
|
else
|
|
{
|
|
aRetval.append(aEdge.getEndPoint());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
impSubdivideToSimple(aEdge, aRetval, fMaxCosQuad, fMaxPartOfEdgeQuad, 6);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// straight edge, add point
|
|
aRetval.append(aEdge.getEndPoint());
|
|
}
|
|
|
|
// prepare edge for next step
|
|
aEdge.setStartPoint(aEdge.getEndPoint());
|
|
}
|
|
|
|
// copy closed flag and check for double points
|
|
aRetval.setClosed(rCandidate.isClosed());
|
|
aRetval.removeDoublePoints();
|
|
|
|
return aRetval;
|
|
}
|
|
else
|
|
{
|
|
return rCandidate;
|
|
}
|
|
}
|
|
|
|
B2DPolygon createAreaGeometryForEdge(const B2DCubicBezier& rEdge, double fHalfLineWidth)
|
|
{
|
|
// create polygon for edge
|
|
// Unfortunately, while it would be geometrically correct to not add
|
|
// the in-between points EdgeEnd and EdgeStart, it leads to rounding
|
|
// errors when converting to integer polygon coordinates for painting
|
|
if(rEdge.isBezier())
|
|
{
|
|
// prepare target and data common for upper and lower
|
|
B2DPolygon aBezierPolygon;
|
|
const B2DVector aPureEdgeVector(rEdge.getEndPoint() - rEdge.getStartPoint());
|
|
const double fEdgeLength(aPureEdgeVector.getLength());
|
|
const bool bIsEdgeLengthZero(fTools::equalZero(fEdgeLength));
|
|
const B2DVector aTangentA(rEdge.getTangent(0.0));
|
|
const B2DVector aTangentB(rEdge.getTangent(1.0));
|
|
|
|
// create upper edge.
|
|
{
|
|
// create displacement vectors and check if they cut
|
|
const B2DVector aPerpendStart(getNormalizedPerpendicular(aTangentA) * -fHalfLineWidth);
|
|
const B2DVector aPerpendEnd(getNormalizedPerpendicular(aTangentB) * -fHalfLineWidth);
|
|
double fCut(0.0);
|
|
const tools::CutFlagValue aCut(tools::findCut(
|
|
rEdge.getStartPoint(), aPerpendStart,
|
|
rEdge.getEndPoint(), aPerpendEnd,
|
|
CUTFLAG_ALL, &fCut));
|
|
|
|
if(CUTFLAG_NONE != aCut)
|
|
{
|
|
// calculate cut point and add
|
|
const B2DPoint aCutPoint(rEdge.getStartPoint() + (aPerpendStart * fCut));
|
|
aBezierPolygon.append(aCutPoint);
|
|
}
|
|
else
|
|
{
|
|
// create scaled bezier segment
|
|
const B2DPoint aStart(rEdge.getStartPoint() + aPerpendStart);
|
|
const B2DPoint aEnd(rEdge.getEndPoint() + aPerpendEnd);
|
|
const B2DVector aEdge(aEnd - aStart);
|
|
const double fLength(aEdge.getLength());
|
|
const double fScale(bIsEdgeLengthZero ? 1.0 : fLength / fEdgeLength);
|
|
const B2DVector fRelNext(rEdge.getControlPointA() - rEdge.getStartPoint());
|
|
const B2DVector fRelPrev(rEdge.getControlPointB() - rEdge.getEndPoint());
|
|
|
|
aBezierPolygon.append(aStart);
|
|
aBezierPolygon.appendBezierSegment(aStart + (fRelNext * fScale), aEnd + (fRelPrev * fScale), aEnd);
|
|
}
|
|
}
|
|
|
|
// append original in-between point
|
|
aBezierPolygon.append(rEdge.getEndPoint());
|
|
|
|
// create lower edge.
|
|
{
|
|
// create displacement vectors and check if they cut
|
|
const B2DVector aPerpendStart(getNormalizedPerpendicular(aTangentA) * fHalfLineWidth);
|
|
const B2DVector aPerpendEnd(getNormalizedPerpendicular(aTangentB) * fHalfLineWidth);
|
|
double fCut(0.0);
|
|
const tools::CutFlagValue aCut(tools::findCut(
|
|
rEdge.getEndPoint(), aPerpendEnd,
|
|
rEdge.getStartPoint(), aPerpendStart,
|
|
CUTFLAG_ALL, &fCut));
|
|
|
|
if(CUTFLAG_NONE != aCut)
|
|
{
|
|
// calculate cut point and add
|
|
const B2DPoint aCutPoint(rEdge.getEndPoint() + (aPerpendEnd * fCut));
|
|
aBezierPolygon.append(aCutPoint);
|
|
}
|
|
else
|
|
{
|
|
// create scaled bezier segment
|
|
const B2DPoint aStart(rEdge.getEndPoint() + aPerpendEnd);
|
|
const B2DPoint aEnd(rEdge.getStartPoint() + aPerpendStart);
|
|
const B2DVector aEdge(aEnd - aStart);
|
|
const double fLength(aEdge.getLength());
|
|
const double fScale(bIsEdgeLengthZero ? 1.0 : fLength / fEdgeLength);
|
|
const B2DVector fRelNext(rEdge.getControlPointB() - rEdge.getEndPoint());
|
|
const B2DVector fRelPrev(rEdge.getControlPointA() - rEdge.getStartPoint());
|
|
|
|
aBezierPolygon.append(aStart);
|
|
aBezierPolygon.appendBezierSegment(aStart + (fRelNext * fScale), aEnd + (fRelPrev * fScale), aEnd);
|
|
}
|
|
}
|
|
|
|
// append original in-between point
|
|
aBezierPolygon.append(rEdge.getStartPoint());
|
|
|
|
// close and return
|
|
aBezierPolygon.setClosed(true);
|
|
return aBezierPolygon;
|
|
}
|
|
else
|
|
{
|
|
// #i101491# emulate rEdge.getTangent call which applies a factor of 0.3 to the
|
|
// full-length edge vector to have numerically exactly the same results as in the
|
|
// createAreaGeometryForJoin implementation
|
|
const B2DVector aEdgeTangent((rEdge.getEndPoint() - rEdge.getStartPoint()) * 0.3);
|
|
const B2DVector aPerpendEdgeVector(getNormalizedPerpendicular(aEdgeTangent) * fHalfLineWidth);
|
|
B2DPolygon aEdgePolygon;
|
|
|
|
// create upper edge
|
|
aEdgePolygon.append(rEdge.getStartPoint() - aPerpendEdgeVector);
|
|
aEdgePolygon.append(rEdge.getEndPoint() - aPerpendEdgeVector);
|
|
|
|
// append original in-between point
|
|
aEdgePolygon.append(rEdge.getEndPoint());
|
|
|
|
// create lower edge
|
|
aEdgePolygon.append(rEdge.getEndPoint() + aPerpendEdgeVector);
|
|
aEdgePolygon.append(rEdge.getStartPoint() + aPerpendEdgeVector);
|
|
|
|
// append original in-between point
|
|
aEdgePolygon.append(rEdge.getStartPoint());
|
|
|
|
// close and return
|
|
aEdgePolygon.setClosed(true);
|
|
return aEdgePolygon;
|
|
}
|
|
}
|
|
|
|
B2DPolygon createAreaGeometryForJoin(
|
|
const B2DVector& rTangentPrev,
|
|
const B2DVector& rTangentEdge,
|
|
const B2DVector& rPerpendPrev,
|
|
const B2DVector& rPerpendEdge,
|
|
const B2DPoint& rPoint,
|
|
double fHalfLineWidth,
|
|
B2DLineJoin eJoin,
|
|
double fMiterMinimumAngle)
|
|
{
|
|
OSL_ENSURE(fHalfLineWidth > 0.0, "createAreaGeometryForJoin: LineWidth too small (!)");
|
|
OSL_ENSURE(B2DLINEJOIN_NONE != eJoin, "createAreaGeometryForJoin: B2DLINEJOIN_NONE not allowed (!)");
|
|
|
|
// LineJoin from tangent rPerpendPrev to tangent rPerpendEdge in rPoint
|
|
B2DPolygon aEdgePolygon;
|
|
const B2DPoint aStartPoint(rPoint + rPerpendPrev);
|
|
const B2DPoint aEndPoint(rPoint + rPerpendEdge);
|
|
|
|
// test if for Miter, the angle is too small and the fallback
|
|
// to bevel needs to be used
|
|
if(B2DLINEJOIN_MITER == eJoin)
|
|
{
|
|
const double fAngle(fabs(rPerpendPrev.angle(rPerpendEdge)));
|
|
|
|
if((F_PI - fAngle) < fMiterMinimumAngle)
|
|
{
|
|
// fallback to bevel
|
|
eJoin = B2DLINEJOIN_BEVEL;
|
|
}
|
|
}
|
|
|
|
switch(eJoin)
|
|
{
|
|
case B2DLINEJOIN_MITER :
|
|
{
|
|
aEdgePolygon.append(aEndPoint);
|
|
aEdgePolygon.append(rPoint);
|
|
aEdgePolygon.append(aStartPoint);
|
|
|
|
// Look for the cut point between start point along rTangentPrev and
|
|
// end point along rTangentEdge. -rTangentEdge should be used, but since
|
|
// the cut value is used for interpolating along the first edge, the negation
|
|
// is not needed since the same fCut will be found on the first edge.
|
|
// If it exists, insert it to complete the mitered fill polygon.
|
|
double fCutPos(0.0);
|
|
tools::findCut(aStartPoint, rTangentPrev, aEndPoint, rTangentEdge, CUTFLAG_ALL, &fCutPos);
|
|
|
|
if(0.0 != fCutPos)
|
|
{
|
|
const B2DPoint aCutPoint(interpolate(aStartPoint, aStartPoint + rTangentPrev, fCutPos));
|
|
aEdgePolygon.append(aCutPoint);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case B2DLINEJOIN_ROUND :
|
|
{
|
|
// use tooling to add needed EllipseSegment
|
|
double fAngleStart(atan2(rPerpendPrev.getY(), rPerpendPrev.getX()));
|
|
double fAngleEnd(atan2(rPerpendEdge.getY(), rPerpendEdge.getX()));
|
|
|
|
// atan2 results are [-PI .. PI], consolidate to [0.0 .. 2PI]
|
|
if(fAngleStart < 0.0)
|
|
{
|
|
fAngleStart += F_2PI;
|
|
}
|
|
|
|
if(fAngleEnd < 0.0)
|
|
{
|
|
fAngleEnd += F_2PI;
|
|
}
|
|
|
|
const B2DPolygon aBow(tools::createPolygonFromEllipseSegment(rPoint, fHalfLineWidth, fHalfLineWidth, fAngleStart, fAngleEnd));
|
|
|
|
if(aBow.count() > 1)
|
|
{
|
|
// #i101491#
|
|
// use the original start/end positions; the ones from bow creation may be numerically
|
|
// different due to their different creation. To guarantee good merging quality with edges
|
|
// and edge roundings (and to reduce point count)
|
|
aEdgePolygon = aBow;
|
|
aEdgePolygon.setB2DPoint(0, aStartPoint);
|
|
aEdgePolygon.setB2DPoint(aEdgePolygon.count() - 1, aEndPoint);
|
|
aEdgePolygon.append(rPoint);
|
|
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
// wanted fall-through to default
|
|
}
|
|
}
|
|
default: // B2DLINEJOIN_BEVEL
|
|
{
|
|
aEdgePolygon.append(aEndPoint);
|
|
aEdgePolygon.append(rPoint);
|
|
aEdgePolygon.append(aStartPoint);
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// create last polygon part for edge
|
|
aEdgePolygon.setClosed(true);
|
|
|
|
return aEdgePolygon;
|
|
}
|
|
} // end of anonymus namespace
|
|
|
|
namespace tools
|
|
{
|
|
B2DPolyPolygon createAreaGeometry(
|
|
const B2DPolygon& rCandidate,
|
|
double fHalfLineWidth,
|
|
B2DLineJoin eJoin,
|
|
double fMaxAllowedAngle,
|
|
double fMaxPartOfEdge,
|
|
double fMiterMinimumAngle)
|
|
{
|
|
if(fMaxAllowedAngle > F_PI2)
|
|
{
|
|
fMaxAllowedAngle = F_PI2;
|
|
}
|
|
else if(fMaxAllowedAngle < 0.01 * F_PI2)
|
|
{
|
|
fMaxAllowedAngle = 0.01 * F_PI2;
|
|
}
|
|
|
|
if(fMaxPartOfEdge > 1.0)
|
|
{
|
|
fMaxPartOfEdge = 1.0;
|
|
}
|
|
else if(fMaxPartOfEdge < 0.01)
|
|
{
|
|
fMaxPartOfEdge = 0.01;
|
|
}
|
|
|
|
if(fMiterMinimumAngle > F_PI)
|
|
{
|
|
fMiterMinimumAngle = F_PI;
|
|
}
|
|
else if(fMiterMinimumAngle < 0.01 * F_PI)
|
|
{
|
|
fMiterMinimumAngle = 0.01 * F_PI;
|
|
}
|
|
|
|
B2DPolygon aCandidate(rCandidate);
|
|
const double fMaxCos(cos(fMaxAllowedAngle));
|
|
|
|
aCandidate.removeDoublePoints();
|
|
aCandidate = subdivideToSimple(aCandidate, fMaxCos * fMaxCos, fMaxPartOfEdge * fMaxPartOfEdge);
|
|
|
|
const sal_uInt32 nPointCount(aCandidate.count());
|
|
|
|
if(nPointCount)
|
|
{
|
|
B2DPolyPolygon aRetval;
|
|
const bool bEventuallyCreateLineJoin(B2DLINEJOIN_NONE != eJoin);
|
|
const bool bIsClosed(aCandidate.isClosed());
|
|
const sal_uInt32 nEdgeCount(bIsClosed ? nPointCount : nPointCount - 1);
|
|
|
|
if(nEdgeCount)
|
|
{
|
|
B2DCubicBezier aEdge;
|
|
B2DCubicBezier aPrev;
|
|
|
|
// prepare edge
|
|
aEdge.setStartPoint(aCandidate.getB2DPoint(0));
|
|
|
|
if(bIsClosed && bEventuallyCreateLineJoin)
|
|
{
|
|
// prepare previous edge
|
|
const sal_uInt32 nPrevIndex(nPointCount - 1);
|
|
aPrev.setStartPoint(aCandidate.getB2DPoint(nPrevIndex));
|
|
aPrev.setControlPointA(aCandidate.getNextControlPoint(nPrevIndex));
|
|
aPrev.setControlPointB(aCandidate.getPrevControlPoint(0));
|
|
aPrev.setEndPoint(aEdge.getStartPoint());
|
|
}
|
|
|
|
for(sal_uInt32 a(0); a < nEdgeCount; a++)
|
|
{
|
|
// fill current Edge
|
|
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
|
|
aEdge.setControlPointA(aCandidate.getNextControlPoint(a));
|
|
aEdge.setControlPointB(aCandidate.getPrevControlPoint(nNextIndex));
|
|
aEdge.setEndPoint(aCandidate.getB2DPoint(nNextIndex));
|
|
|
|
// check and create linejoin
|
|
if(bEventuallyCreateLineJoin && (bIsClosed || 0 != a))
|
|
{
|
|
const B2DVector aTangentPrev(aPrev.getTangent(1.0));
|
|
const B2DVector aTangentEdge(aEdge.getTangent(0.0));
|
|
B2VectorOrientation aOrientation(getOrientation(aTangentPrev, aTangentEdge));
|
|
|
|
if(ORIENTATION_NEUTRAL == aOrientation)
|
|
{
|
|
// they are parallell or empty; if they are both not zero and point
|
|
// in opposite direction, a half-circle is needed
|
|
if(!aTangentPrev.equalZero() && !aTangentEdge.equalZero())
|
|
{
|
|
const double fAngle(fabs(aTangentPrev.angle(aTangentEdge)));
|
|
|
|
if(fTools::equal(fAngle, F_PI))
|
|
{
|
|
// for half-circle production, fallback to positive
|
|
// orientation
|
|
aOrientation = ORIENTATION_POSITIVE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(ORIENTATION_POSITIVE == aOrientation)
|
|
{
|
|
const B2DVector aPerpendPrev(getNormalizedPerpendicular(aTangentPrev) * -fHalfLineWidth);
|
|
const B2DVector aPerpendEdge(getNormalizedPerpendicular(aTangentEdge) * -fHalfLineWidth);
|
|
|
|
aRetval.append(createAreaGeometryForJoin(
|
|
aTangentPrev, aTangentEdge,
|
|
aPerpendPrev, aPerpendEdge,
|
|
aEdge.getStartPoint(), fHalfLineWidth,
|
|
eJoin, fMiterMinimumAngle));
|
|
}
|
|
else if(ORIENTATION_NEGATIVE == aOrientation)
|
|
{
|
|
const B2DVector aPerpendPrev(getNormalizedPerpendicular(aTangentPrev) * fHalfLineWidth);
|
|
const B2DVector aPerpendEdge(getNormalizedPerpendicular(aTangentEdge) * fHalfLineWidth);
|
|
|
|
aRetval.append(createAreaGeometryForJoin(
|
|
aTangentEdge, aTangentPrev,
|
|
aPerpendEdge, aPerpendPrev,
|
|
aEdge.getStartPoint(), fHalfLineWidth,
|
|
eJoin, fMiterMinimumAngle));
|
|
}
|
|
}
|
|
|
|
// create geometry for edge
|
|
aRetval.append(createAreaGeometryForEdge(aEdge, fHalfLineWidth));
|
|
|
|
// prepare next step
|
|
if(bEventuallyCreateLineJoin)
|
|
{
|
|
aPrev = aEdge;
|
|
}
|
|
|
|
aEdge.setStartPoint(aEdge.getEndPoint());
|
|
}
|
|
}
|
|
|
|
return aRetval;
|
|
}
|
|
else
|
|
{
|
|
return B2DPolyPolygon(rCandidate);
|
|
}
|
|
}
|
|
} // end of namespace tools
|
|
} // end of namespace basegfx
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// eof
|