1097686ebd
This is the way it's done everywhere.
Partially revert 4b6e0f2c88
"tdf#160726, tdf#48062: Simplify how BitmapExs are created"
Change-Id: I15fea0b6855a65da7cb48b24fc00ba303e33dcf8
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/166456
Tested-by: Jenkins
Reviewed-by: Xisco Fauli <xiscofauli@libreoffice.org>
359 lines
16 KiB
C++
359 lines
16 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/*
|
|
* This file is part of the LibreOffice project.
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
* This file incorporates work covered by the following license notice:
|
|
*
|
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed
|
|
* with this work for additional information regarding copyright
|
|
* ownership. The ASF licenses this file to you under the Apache
|
|
* License, Version 2.0 (the "License"); you may not use this file
|
|
* except in compliance with the License. You may obtain a copy of
|
|
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
|
|
*/
|
|
|
|
#include <drawinglayer/primitive2d/glowprimitive2d.hxx>
|
|
#include <drawinglayer/primitive2d/transformprimitive2d.hxx>
|
|
#include <drawinglayer/primitive2d/drawinglayer_primitivetypes2d.hxx>
|
|
#include <drawinglayer/primitive2d/bitmapprimitive2d.hxx>
|
|
#include <basegfx/matrix/b2dhommatrixtools.hxx>
|
|
#include <toolkit/helper/vclunohelper.hxx>
|
|
#include <drawinglayer/converters.hxx>
|
|
#include "GlowSoftEgdeShadowTools.hxx"
|
|
|
|
#ifdef DBG_UTIL
|
|
#include <tools/stream.hxx>
|
|
#include <vcl/filter/PngImageWriter.hxx>
|
|
#endif
|
|
|
|
using namespace com::sun::star;
|
|
|
|
namespace drawinglayer::primitive2d
|
|
{
|
|
GlowPrimitive2D::GlowPrimitive2D(const Color& rGlowColor, double fRadius,
|
|
Primitive2DContainer&& rChildren)
|
|
: BufferedDecompositionGroupPrimitive2D(std::move(rChildren))
|
|
, maGlowColor(rGlowColor)
|
|
, mfGlowRadius(fRadius)
|
|
, mfLastDiscreteGlowRadius(0.0)
|
|
, maLastClippedRange()
|
|
{
|
|
// activate callback to flush buffered decomposition content
|
|
setCallbackSeconds(15);
|
|
}
|
|
|
|
bool GlowPrimitive2D::operator==(const BasePrimitive2D& rPrimitive) const
|
|
{
|
|
if (BufferedDecompositionGroupPrimitive2D::operator==(rPrimitive))
|
|
{
|
|
const GlowPrimitive2D& rCompare = static_cast<const GlowPrimitive2D&>(rPrimitive);
|
|
|
|
return (getGlowRadius() == rCompare.getGlowRadius()
|
|
&& getGlowColor() == rCompare.getGlowColor());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool GlowPrimitive2D::prepareValuesAndcheckValidity(
|
|
basegfx::B2DRange& rGlowRange, basegfx::B2DRange& rClippedRange,
|
|
basegfx::B2DVector& rDiscreteGlowSize, double& rfDiscreteGlowRadius,
|
|
const geometry::ViewInformation2D& rViewInformation) const
|
|
{
|
|
// no GlowRadius defined, done
|
|
if (getGlowRadius() <= 0.0)
|
|
return false;
|
|
|
|
// no geometry, done
|
|
if (getChildren().empty())
|
|
return false;
|
|
|
|
// no pixel target, done
|
|
if (rViewInformation.getObjectToViewTransformation().isIdentity())
|
|
return false;
|
|
|
|
// get geometry range that defines area that needs to be pixelated
|
|
rGlowRange = getChildren().getB2DRange(rViewInformation);
|
|
|
|
// no range of geometry, done
|
|
if (rGlowRange.isEmpty())
|
|
return false;
|
|
|
|
// extend range by GlowRadius in all directions
|
|
rGlowRange.grow(getGlowRadius());
|
|
|
|
// initialize ClippedRange to full GlowRange -> all is visible
|
|
rClippedRange = rGlowRange;
|
|
|
|
// get Viewport and check if used. If empty, all is visible (see
|
|
// ViewInformation2D definition in viewinformation2d.hxx)
|
|
if (!rViewInformation.getViewport().isEmpty())
|
|
{
|
|
// if used, extend by GlowRadius to ensure needed parts are included
|
|
basegfx::B2DRange aVisibleArea(rViewInformation.getViewport());
|
|
aVisibleArea.grow(getGlowRadius());
|
|
|
|
// To do this correctly, it needs to be done in discrete coordinates.
|
|
// The object may be transformed relative to the original#
|
|
// ObjectTransformation, e.g. when re-used in shadow
|
|
aVisibleArea.transform(rViewInformation.getViewTransformation());
|
|
rClippedRange.transform(rViewInformation.getObjectToViewTransformation());
|
|
|
|
// calculate ClippedRange
|
|
rClippedRange.intersect(aVisibleArea);
|
|
|
|
// if GlowRange is completely outside of VisibleArea, ClippedRange
|
|
// will be empty and we are done
|
|
if (rClippedRange.isEmpty())
|
|
return false;
|
|
|
|
// convert result back to object coordinates
|
|
rClippedRange.transform(rViewInformation.getInverseObjectToViewTransformation());
|
|
}
|
|
|
|
// calculate discrete pixel size of GlowRange. If it's too small to visualize, we are done
|
|
rDiscreteGlowSize = rViewInformation.getObjectToViewTransformation() * rGlowRange.getRange();
|
|
if (ceil(rDiscreteGlowSize.getX()) < 2.0 || ceil(rDiscreteGlowSize.getY()) < 2.0)
|
|
return false;
|
|
|
|
// calculate discrete pixel size of GlowRadius. If it's too small to visualize, we are done
|
|
rfDiscreteGlowRadius = ceil(
|
|
(rViewInformation.getObjectToViewTransformation() * basegfx::B2DVector(getGlowRadius(), 0))
|
|
.getLength());
|
|
if (rfDiscreteGlowRadius < 1.0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void GlowPrimitive2D::create2DDecomposition(
|
|
Primitive2DContainer& rContainer, const geometry::ViewInformation2D& rViewInformation) const
|
|
{
|
|
basegfx::B2DRange aGlowRange;
|
|
basegfx::B2DRange aClippedRange;
|
|
basegfx::B2DVector aDiscreteGlowSize;
|
|
double fDiscreteGlowRadius(0.0);
|
|
|
|
// Check various validity details and calculate/prepare values. If false, we are done
|
|
if (!prepareValuesAndcheckValidity(aGlowRange, aClippedRange, aDiscreteGlowSize,
|
|
fDiscreteGlowRadius, rViewInformation))
|
|
return;
|
|
|
|
// Create embedding transformation from object to top-left zero-aligned
|
|
// target pixel geometry (discrete form of ClippedRange)
|
|
// First, move to top-left of GlowRange
|
|
const sal_uInt32 nDiscreteGlowWidth(ceil(aDiscreteGlowSize.getX()));
|
|
const sal_uInt32 nDiscreteGlowHeight(ceil(aDiscreteGlowSize.getY()));
|
|
basegfx::B2DHomMatrix aEmbedding(basegfx::utils::createTranslateB2DHomMatrix(
|
|
-aClippedRange.getMinX(), -aClippedRange.getMinY()));
|
|
// Second, scale to discrete bitmap size
|
|
// Even when using the offset from ClippedRange, we need to use the
|
|
// scaling from the full representation, thus from GlowRange
|
|
aEmbedding.scale(nDiscreteGlowWidth / aGlowRange.getWidth(),
|
|
nDiscreteGlowHeight / aGlowRange.getHeight());
|
|
|
|
// Embed content graphics to TransformPrimitive2D
|
|
const primitive2d::Primitive2DReference xEmbedRef(
|
|
new primitive2d::TransformPrimitive2D(aEmbedding, Primitive2DContainer(getChildren())));
|
|
primitive2d::Primitive2DContainer xEmbedSeq{ xEmbedRef };
|
|
|
|
// Create BitmapEx using drawinglayer tooling, including a MaximumQuadraticPixel
|
|
// limitation to be safe and not go runtime/memory havoc. Use a pretty small
|
|
// limit due to this is glow functionality and will look good with bitmap scaling
|
|
// anyways. The value of 250.000 square pixels below maybe adapted as needed.
|
|
const basegfx::B2DVector aDiscreteClippedSize(rViewInformation.getObjectToViewTransformation()
|
|
* aClippedRange.getRange());
|
|
const sal_uInt32 nDiscreteClippedWidth(ceil(aDiscreteClippedSize.getX()));
|
|
const sal_uInt32 nDiscreteClippedHeight(ceil(aDiscreteClippedSize.getY()));
|
|
const geometry::ViewInformation2D aViewInformation2D;
|
|
const sal_uInt32 nMaximumQuadraticPixels(250000);
|
|
|
|
// I have now added a helper that just creates the mask without having
|
|
// to render the content, use it, it's faster
|
|
const AlphaMask aAlpha(::drawinglayer::createAlphaMask(
|
|
std::move(xEmbedSeq), aViewInformation2D, nDiscreteClippedWidth, nDiscreteClippedHeight,
|
|
nMaximumQuadraticPixels));
|
|
|
|
if (aAlpha.IsEmpty())
|
|
return;
|
|
|
|
const Size& rBitmapExSizePixel(aAlpha.GetSizePixel());
|
|
|
|
if (rBitmapExSizePixel.Width() <= 0 || rBitmapExSizePixel.Height() <= 0)
|
|
return;
|
|
|
|
// We may have to take a corrective scaling into account when the
|
|
// MaximumQuadraticPixel limit was used/triggered
|
|
double fScale(1.0);
|
|
|
|
if (static_cast<sal_uInt32>(rBitmapExSizePixel.Width()) != nDiscreteClippedWidth
|
|
|| static_cast<sal_uInt32>(rBitmapExSizePixel.Height()) != nDiscreteClippedHeight)
|
|
{
|
|
// scale in X and Y should be the same (see fReduceFactor in createAlphaMask),
|
|
// so adapt numerically to a single scale value, they are integer rounded values
|
|
const double fScaleX(static_cast<double>(rBitmapExSizePixel.Width())
|
|
/ static_cast<double>(nDiscreteClippedWidth));
|
|
const double fScaleY(static_cast<double>(rBitmapExSizePixel.Height())
|
|
/ static_cast<double>(nDiscreteClippedHeight));
|
|
|
|
fScale = (fScaleX + fScaleY) * 0.5;
|
|
}
|
|
|
|
// fDiscreteGlowRadius is the size of the halo from each side of the object. The halo is the
|
|
// border of glow color that fades from glow transparency level to fully transparent
|
|
// When blurring a sharp boundary (our case), it gets 50% of original intensity, and
|
|
// fades to both sides by the blur radius; thus blur radius is half of glow radius.
|
|
// Consider glow transparency (initial transparency near the object edge)
|
|
AlphaMask mask(ProcessAndBlurAlphaMask(aAlpha, fDiscreteGlowRadius * fScale / 2.0,
|
|
fDiscreteGlowRadius * fScale / 2.0,
|
|
255 - getGlowColor().GetAlpha()));
|
|
|
|
// The end result is the bitmap filled with glow color and blurred 8-bit alpha mask
|
|
Bitmap bmp(aAlpha.GetSizePixel(), vcl::PixelFormat::N24_BPP);
|
|
bmp.Erase(getGlowColor());
|
|
BitmapEx result(bmp, mask);
|
|
|
|
#ifdef DBG_UTIL
|
|
static bool bDoSaveForVisualControl(false); // loplugin:constvars:ignore
|
|
if (bDoSaveForVisualControl)
|
|
{
|
|
// VCL_DUMP_BMP_PATH should be like C:/path/ or ~/path/
|
|
static const OUString sDumpPath(
|
|
OUString::createFromAscii(std::getenv("VCL_DUMP_BMP_PATH")));
|
|
if (!sDumpPath.isEmpty())
|
|
{
|
|
SvFileStream aNew(sDumpPath + "test_glow.png", StreamMode::WRITE | StreamMode::TRUNC);
|
|
vcl::PngImageWriter aPNGWriter(aNew);
|
|
aPNGWriter.write(result);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Independent from discrete sizes of glow alpha creation, always
|
|
// map and project glow result to geometry range extended by glow
|
|
// radius, but to the eventually clipped instance (ClippedRange)
|
|
const primitive2d::Primitive2DReference xEmbedRefBitmap(
|
|
new BitmapPrimitive2D(result, basegfx::utils::createScaleTranslateB2DHomMatrix(
|
|
aClippedRange.getWidth(), aClippedRange.getHeight(),
|
|
aClippedRange.getMinX(), aClippedRange.getMinY())));
|
|
|
|
rContainer = primitive2d::Primitive2DContainer{ xEmbedRefBitmap };
|
|
}
|
|
|
|
// Using tooling class BufferedDecompositionGroupPrimitive2D now, so
|
|
// no more need to locally do the buffered get2DDecomposition here,
|
|
// see BufferedDecompositionGroupPrimitive2D::get2DDecomposition
|
|
void GlowPrimitive2D::get2DDecomposition(Primitive2DDecompositionVisitor& rVisitor,
|
|
const geometry::ViewInformation2D& rViewInformation) const
|
|
{
|
|
basegfx::B2DRange aGlowRange;
|
|
basegfx::B2DRange aClippedRange;
|
|
basegfx::B2DVector aDiscreteGlowSize;
|
|
double fDiscreteGlowRadius(0.0);
|
|
|
|
// Check various validity details and calculate/prepare values. If false, we are done
|
|
if (!prepareValuesAndcheckValidity(aGlowRange, aClippedRange, aDiscreteGlowSize,
|
|
fDiscreteGlowRadius, rViewInformation))
|
|
return;
|
|
|
|
if (!getBuffered2DDecomposition().empty())
|
|
{
|
|
// First check is to detect if the last created decompose is capable
|
|
// to represent the now requested visualization.
|
|
// ClippedRange is the needed visualizationArea for the current glow
|
|
// effect, LastClippedRange is the one from the existing/last rendering.
|
|
// Check if last created area is sufficient and can be re-used
|
|
if (!maLastClippedRange.isEmpty() && !maLastClippedRange.isInside(aClippedRange))
|
|
{
|
|
// To avoid unnecessary invalidations due to being *very* correct
|
|
// with HairLines (which are view-dependent and thus change the
|
|
// result(s) here slightly when changing zoom), add a slight unsharp
|
|
// component if we have a ViewTransform. The derivation is inside
|
|
// the range of half a pixel (due to one pixel hairline)
|
|
basegfx::B2DRange aLastClippedRangeAndHairline(maLastClippedRange);
|
|
|
|
if (!rViewInformation.getObjectToViewTransformation().isIdentity())
|
|
{
|
|
// Grow by view-dependent size of 1/2 pixel
|
|
const double fHalfPixel((rViewInformation.getInverseObjectToViewTransformation()
|
|
* basegfx::B2DVector(0.5, 0))
|
|
.getLength());
|
|
aLastClippedRangeAndHairline.grow(fHalfPixel);
|
|
}
|
|
|
|
if (!aLastClippedRangeAndHairline.isInside(aClippedRange))
|
|
{
|
|
// Conditions of last local decomposition have changed, delete
|
|
const_cast<GlowPrimitive2D*>(this)->setBuffered2DDecomposition(
|
|
Primitive2DContainer());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!getBuffered2DDecomposition().empty())
|
|
{
|
|
// Second check is to react on changes of the DiscreteGlowRadius when
|
|
// zooming in/out.
|
|
// Use the known last and current DiscreteGlowRadius to decide
|
|
// if the visualization can be re-used. Be a little 'creative' here
|
|
// and make it dependent on a *relative* change - it is not necessary
|
|
// to re-create everytime if the exact value is missed since zooming
|
|
// pixel-based glow effect is pretty good due to it's smooth nature
|
|
bool bFree(mfLastDiscreteGlowRadius <= 0.0 || fDiscreteGlowRadius <= 0.0);
|
|
|
|
if (!bFree)
|
|
{
|
|
const double fDiff(fabs(mfLastDiscreteGlowRadius - fDiscreteGlowRadius));
|
|
const double fLen(fabs(mfLastDiscreteGlowRadius) + fabs(fDiscreteGlowRadius));
|
|
const double fRelativeChange(fDiff / fLen);
|
|
|
|
// Use lower fixed values here to change more often, higher to change less often.
|
|
// Value is in the range of ]0.0 .. 1.0]
|
|
bFree = fRelativeChange >= 0.15;
|
|
}
|
|
|
|
if (bFree)
|
|
{
|
|
// Conditions of last local decomposition have changed, delete
|
|
const_cast<GlowPrimitive2D*>(this)->setBuffered2DDecomposition(Primitive2DContainer());
|
|
}
|
|
}
|
|
|
|
if (getBuffered2DDecomposition().empty())
|
|
{
|
|
// refresh last used DiscreteGlowRadius and ClippedRange to new remembered values
|
|
const_cast<GlowPrimitive2D*>(this)->mfLastDiscreteGlowRadius = fDiscreteGlowRadius;
|
|
const_cast<GlowPrimitive2D*>(this)->maLastClippedRange = aClippedRange;
|
|
}
|
|
|
|
// call parent, that will check for empty, call create2DDecomposition and
|
|
// set as decomposition
|
|
BufferedDecompositionGroupPrimitive2D::get2DDecomposition(rVisitor, rViewInformation);
|
|
}
|
|
|
|
basegfx::B2DRange
|
|
GlowPrimitive2D::getB2DRange(const geometry::ViewInformation2D& rViewInformation) const
|
|
{
|
|
// Hint: Do *not* use GroupPrimitive2D::getB2DRange, that will (unnecessarily)
|
|
// use the decompose - what works, but is not needed here.
|
|
// We know the to-be-visualized geometry and the radius it needs to be extended,
|
|
// so simply calculate the exact needed range.
|
|
basegfx::B2DRange aRetval(getChildren().getB2DRange(rViewInformation));
|
|
|
|
// We need additional space for the glow from all sides
|
|
aRetval.grow(getGlowRadius());
|
|
|
|
return aRetval;
|
|
}
|
|
|
|
// provide unique ID
|
|
sal_uInt32 GlowPrimitive2D::getPrimitive2DID() const { return PRIMITIVE2D_ID_GLOWPRIMITIVE2D; }
|
|
|
|
} // end of namespace
|
|
|
|
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|