office-gobmx/vcl/quartz/salgdicommon.cxx
Thorsten Wagner 00d12793f5 tdf#141063 Always use region rectangles for clipping on macOS
The use of polygons currently causes misalignment by one pixel.
Use of polygons is dropped on macOS by this change similar it has
been done for SKIA to fix tdf#133208.

Change-Id: I31faf7cf9b33908a52cb60d1b631308b4fe45e56
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/112823
Tested-by: Jenkins
Reviewed-by: Luboš Luňák <l.lunak@collabora.com>
Reviewed-by: Tor Lillqvist <tml@collabora.com>
2021-03-23 10:06:39 +01:00

1702 lines
54 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; fill-column: 100 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sal/config.h>
#include <sal/log.hxx>
#include <cassert>
#include <cstring>
#include <numeric>
#include <basegfx/polygon/b2dpolygon.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/polygon/b2dpolypolygontools.hxx>
#include <osl/endian.h>
#include <osl/file.hxx>
#include <sal/types.h>
#include <tools/long.hxx>
#include <vcl/sysdata.hxx>
#include <fontsubset.hxx>
#include <quartz/salbmp.h>
#ifdef MACOSX
#include <quartz/salgdi.h>
#endif
#include <quartz/utils.h>
#ifdef IOS
#include "saldatabasic.hxx"
#endif
#include <sft.hxx>
using namespace vcl;
const basegfx::B2DPoint aHalfPointOfs ( 0.5, 0.5 );
static void AddPolygonToPath( CGMutablePathRef xPath,
const basegfx::B2DPolygon& rPolygon,
bool bClosePath, bool bPixelSnap, bool bLineDraw )
{
// short circuit if there is nothing to do
const int nPointCount = rPolygon.count();
if( nPointCount <= 0 )
{
return;
}
const bool bHasCurves = rPolygon.areControlPointsUsed();
for( int nPointIdx = 0, nPrevIdx = 0;; nPrevIdx = nPointIdx++ )
{
int nClosedIdx = nPointIdx;
if( nPointIdx >= nPointCount )
{
// prepare to close last curve segment if needed
if( bClosePath && (nPointIdx == nPointCount) )
{
nClosedIdx = 0;
}
else
{
break;
}
}
basegfx::B2DPoint aPoint = rPolygon.getB2DPoint( nClosedIdx );
if( bPixelSnap)
{
// snap device coordinates to full pixels
aPoint.setX( basegfx::fround( aPoint.getX() ) );
aPoint.setY( basegfx::fround( aPoint.getY() ) );
}
if( bLineDraw )
{
aPoint += aHalfPointOfs;
}
if( !nPointIdx )
{
// first point => just move there
CGPathMoveToPoint( xPath, nullptr, aPoint.getX(), aPoint.getY() );
continue;
}
bool bPendingCurve = false;
if( bHasCurves )
{
bPendingCurve = rPolygon.isNextControlPointUsed( nPrevIdx );
bPendingCurve |= rPolygon.isPrevControlPointUsed( nClosedIdx );
}
if( !bPendingCurve ) // line segment
{
CGPathAddLineToPoint( xPath, nullptr, aPoint.getX(), aPoint.getY() );
}
else // cubic bezier segment
{
basegfx::B2DPoint aCP1 = rPolygon.getNextControlPoint( nPrevIdx );
basegfx::B2DPoint aCP2 = rPolygon.getPrevControlPoint( nClosedIdx );
if( bLineDraw )
{
aCP1 += aHalfPointOfs;
aCP2 += aHalfPointOfs;
}
CGPathAddCurveToPoint( xPath, nullptr, aCP1.getX(), aCP1.getY(),
aCP2.getX(), aCP2.getY(), aPoint.getX(), aPoint.getY() );
}
}
if( bClosePath )
{
CGPathCloseSubpath( xPath );
}
}
bool AquaSalGraphics::CreateFontSubset( const OUString& rToFile,
const PhysicalFontFace* pFontData,
const sal_GlyphId* pGlyphIds, const sal_uInt8* pEncoding,
sal_Int32* pGlyphWidths, const int nGlyphCount,
FontSubsetInfo& rInfo )
{
// TODO: move more of the functionality here into the generic subsetter code
// prepare the requested file name for writing the font-subset file
OUString aSysPath;
if( osl_File_E_None != osl_getSystemPathFromFileURL( rToFile.pData, &aSysPath.pData ) )
return false;
// get the raw-bytes from the font to be subset
std::vector<unsigned char> aBuffer;
bool bCffOnly = false;
if( !GetRawFontData( pFontData, aBuffer, &bCffOnly ) )
return false;
const OString aToFile( OUStringToOString( aSysPath,
osl_getThreadTextEncoding()));
// handle CFF-subsetting
// NOTE: assuming that all glyphids requested on Aqua are fully translated
if (bCffOnly)
return SalGraphics::CreateCFFfontSubset(aBuffer.data(), aBuffer.size(), aToFile, pGlyphIds,
pEncoding, pGlyphWidths, nGlyphCount, rInfo);
// TODO: modernize psprint's horrible fontsubset C-API
// this probably only makes sense after the switch to another SCM
// that can preserve change history after file renames
// prepare data for psprint's font subsetter
TrueTypeFont* pSftFont = nullptr;
if (::OpenTTFontBuffer( static_cast<void*>(aBuffer.data()), aBuffer.size(), 0, &pSftFont)
!= SFErrCodes::Ok)
return false;
// get details about the subsetted font
TTGlobalFontInfo aTTInfo;
::GetTTGlobalFontInfo( pSftFont, &aTTInfo );
OUString aPSName(aTTInfo.psname, std::strlen(aTTInfo.psname), RTL_TEXTENCODING_UTF8);
FillFontSubsetInfo(aTTInfo, aPSName, rInfo);
// write subset into destination file
bool bRet
= SalGraphics::CreateTTFfontSubset(*pSftFont, aToFile, false /* use FontSelectPattern? */,
pGlyphIds, pEncoding, pGlyphWidths, nGlyphCount);
::CloseTTFont(pSftFont);
return bRet;
}
static void alignLinePoint( const Point* i_pIn, float& o_fX, float& o_fY )
{
o_fX = static_cast<float>(i_pIn->getX() ) + 0.5;
o_fY = static_cast<float>(i_pIn->getY() ) + 0.5;
}
static void DrawPattern50( void*, CGContextRef rContext )
{
static const CGRect aRects[2] = { { {0,0}, { 2, 2 } }, { { 2, 2 }, { 2, 2 } } };
CGContextAddRects( rContext, aRects, 2 );
CGContextFillPath( rContext );
}
static void getBoundRect( sal_uInt32 nPoints, const Point *pPtAry,
tools::Long &rX, tools::Long& rY, tools::Long& rWidth,
tools::Long& rHeight )
{
tools::Long nX1 = pPtAry->getX();
tools::Long nX2 = nX1;
tools::Long nY1 = pPtAry->getY();
tools::Long nY2 = nY1;
for( sal_uInt32 n = 1; n < nPoints; n++ )
{
if( pPtAry[n].getX() < nX1 )
{
nX1 = pPtAry[n].getX();
}
else if( pPtAry[n].getX() > nX2 )
{
nX2 = pPtAry[n].getX();
}
if( pPtAry[n].getY() < nY1 )
{
nY1 = pPtAry[n].getY();
}
else if( pPtAry[n].getY() > nY2 )
{
nY2 = pPtAry[n].getY();
}
}
rX = nX1;
rY = nY1;
rWidth = nX2 - nX1 + 1;
rHeight = nY2 - nY1 + 1;
}
static Color ImplGetROPColor( SalROPColor nROPColor )
{
Color nColor;
if ( nROPColor == SalROPColor::N0 )
{
nColor = Color( 0, 0, 0 );
}
else
{
nColor = Color( 255, 255, 255 );
}
return nColor;
}
// apply the XOR mask to the target context if active and dirty
void AquaSalGraphics::ApplyXorContext()
{
if( !mpXorEmulation )
{
return;
}
if( mpXorEmulation->UpdateTarget() )
{
RefreshRect( 0, 0, mnWidth, mnHeight ); // TODO: refresh minimal changerect
}
}
#ifndef IOS
void AquaSalGraphics::copyResolution( AquaSalGraphics& rGraphics )
{
if( !rGraphics.mnRealDPIY && rGraphics.mbWindow && rGraphics.mpFrame )
{
rGraphics.initResolution( rGraphics.mpFrame->getNSWindow() );
}
mnRealDPIX = rGraphics.mnRealDPIX;
mnRealDPIY = rGraphics.mnRealDPIY;
}
#endif
bool AquaSalGraphics::blendBitmap( const SalTwoRect&,
const SalBitmap& )
{
return false;
}
bool AquaSalGraphics::blendAlphaBitmap( const SalTwoRect&,
const SalBitmap&,
const SalBitmap&,
const SalBitmap& )
{
return false;
}
bool AquaSalGraphics::drawAlphaBitmap( const SalTwoRect& rTR,
const SalBitmap& rSrcBitmap,
const SalBitmap& rAlphaBmp )
{
// An image mask can't have a depth > 8 bits (should be 1 to 8 bits)
if( rAlphaBmp.GetBitCount() > 8 )
return false;
// are these two tests really necessary? (see vcl/unx/source/gdi/salgdi2.cxx)
// horizontal/vertical mirroring not implemented yet
if( rTR.mnDestWidth < 0 || rTR.mnDestHeight < 0 )
return false;
const QuartzSalBitmap& rSrcSalBmp = static_cast<const QuartzSalBitmap&>(rSrcBitmap);
const QuartzSalBitmap& rMaskSalBmp = static_cast<const QuartzSalBitmap&>(rAlphaBmp);
CGImageRef xMaskedImage = rSrcSalBmp.CreateWithMask( rMaskSalBmp, rTR.mnSrcX,
rTR.mnSrcY, rTR.mnSrcWidth,
rTR.mnSrcHeight );
if( !xMaskedImage )
return false;
if ( CheckContext() )
{
const CGRect aDstRect = CGRectMake( rTR.mnDestX, rTR.mnDestY, rTR.mnDestWidth, rTR.mnDestHeight);
CGContextDrawImage( maContextHolder.get(), aDstRect, xMaskedImage );
RefreshRect( aDstRect );
}
CGImageRelease(xMaskedImage);
return true;
}
bool AquaSalGraphics::drawTransformedBitmap(
const basegfx::B2DPoint& rNull, const basegfx::B2DPoint& rX, const basegfx::B2DPoint& rY,
const SalBitmap& rSrcBitmap, const SalBitmap* pAlphaBmp, double fAlpha )
{
if( !CheckContext() )
return true;
if( fAlpha != 1.0 )
return false;
// get the Quartz image
CGImageRef xImage = nullptr;
const Size aSize = rSrcBitmap.GetSize();
const QuartzSalBitmap& rSrcSalBmp = static_cast<const QuartzSalBitmap&>(rSrcBitmap);
const QuartzSalBitmap* pMaskSalBmp = static_cast<const QuartzSalBitmap*>(pAlphaBmp);
if( !pMaskSalBmp)
xImage = rSrcSalBmp.CreateCroppedImage( 0, 0, static_cast<int>(aSize.Width()), static_cast<int>(aSize.Height()) );
else
xImage = rSrcSalBmp.CreateWithMask( *pMaskSalBmp, 0, 0, static_cast<int>(aSize.Width()), static_cast<int>(aSize.Height()) );
if( !xImage )
return false;
// setup the image transformation
// using the rNull,rX,rY points as destinations for the (0,0),(0,Width),(Height,0) source points
maContextHolder.saveState();
const basegfx::B2DVector aXRel = rX - rNull;
const basegfx::B2DVector aYRel = rY - rNull;
const CGAffineTransform aCGMat = CGAffineTransformMake(
aXRel.getX()/aSize.Width(), aXRel.getY()/aSize.Width(),
aYRel.getX()/aSize.Height(), aYRel.getY()/aSize.Height(),
rNull.getX(), rNull.getY());
CGContextConcatCTM( maContextHolder.get(), aCGMat );
// draw the transformed image
const CGRect aSrcRect = CGRectMake(0, 0, aSize.Width(), aSize.Height());
CGContextDrawImage( maContextHolder.get(), aSrcRect, xImage );
CGImageRelease( xImage );
// restore the Quartz graphics state
maContextHolder.restoreState();
// mark the destination as painted
const CGRect aDstRect = CGRectApplyAffineTransform( aSrcRect, aCGMat );
RefreshRect( aDstRect );
return true;
}
bool AquaSalGraphics::hasFastDrawTransformedBitmap() const
{
return false;
}
bool AquaSalGraphics::drawAlphaRect( tools::Long nX, tools::Long nY, tools::Long nWidth,
tools::Long nHeight, sal_uInt8 nTransparency )
{
if( !CheckContext() )
return true;
// save the current state
maContextHolder.saveState();
CGContextSetAlpha( maContextHolder.get(), (100-nTransparency) * (1.0/100) );
CGRect aRect = CGRectMake(nX, nY, nWidth-1, nHeight-1);
if( IsPenVisible() )
{
aRect.origin.x += 0.5;
aRect.origin.y += 0.5;
}
CGContextBeginPath( maContextHolder.get() );
CGContextAddRect( maContextHolder.get(), aRect );
CGContextDrawPath( maContextHolder.get(), kCGPathFill );
maContextHolder.restoreState();
RefreshRect( aRect );
return true;
}
void AquaSalGraphics::drawBitmap( const SalTwoRect& rPosAry, const SalBitmap& rSalBitmap )
{
if( !CheckContext() )
return;
const QuartzSalBitmap& rBitmap = static_cast<const QuartzSalBitmap&>(rSalBitmap);
CGImageRef xImage = rBitmap.CreateCroppedImage( static_cast<int>(rPosAry.mnSrcX), static_cast<int>(rPosAry.mnSrcY),
static_cast<int>(rPosAry.mnSrcWidth), static_cast<int>(rPosAry.mnSrcHeight) );
if( !xImage )
return;
const CGRect aDstRect = CGRectMake(rPosAry.mnDestX, rPosAry.mnDestY, rPosAry.mnDestWidth, rPosAry.mnDestHeight);
CGContextDrawImage( maContextHolder.get(), aDstRect, xImage );
CGImageRelease( xImage );
RefreshRect( aDstRect );
}
void AquaSalGraphics::drawBitmap( const SalTwoRect& rPosAry, const SalBitmap& rSalBitmap,
const SalBitmap& rTransparentBitmap )
{
if( !CheckContext() )
return;
const QuartzSalBitmap& rBitmap = static_cast<const QuartzSalBitmap&>(rSalBitmap);
const QuartzSalBitmap& rMask = static_cast<const QuartzSalBitmap&>(rTransparentBitmap);
CGImageRef xMaskedImage( rBitmap.CreateWithMask( rMask, rPosAry.mnSrcX, rPosAry.mnSrcY,
rPosAry.mnSrcWidth, rPosAry.mnSrcHeight ) );
if( !xMaskedImage )
return;
const CGRect aDstRect = CGRectMake(rPosAry.mnDestX, rPosAry.mnDestY, rPosAry.mnDestWidth, rPosAry.mnDestHeight);
CGContextDrawImage( maContextHolder.get(), aDstRect, xMaskedImage );
CGImageRelease( xMaskedImage );
RefreshRect( aDstRect );
}
#ifndef IOS
bool AquaSalGraphics::drawEPS(
tools::Long nX, tools::Long nY, tools::Long nWidth, tools::Long nHeight,
void* pEpsData, sal_uInt32 nByteCount )
{
// convert the raw data to an NSImageRef
NSData* xNSData = [NSData dataWithBytes:pEpsData length:static_cast<int>(nByteCount)];
NSImageRep* xEpsImage = [NSEPSImageRep imageRepWithData: xNSData];
if( !xEpsImage )
{
return false;
}
// get the target context
if( !CheckContext() )
{
return false;
}
// NOTE: flip drawing, else the nsimage would be drawn upside down
maContextHolder.saveState();
// CGContextTranslateCTM( maContextHolder.get(), 0, +mnHeight );
CGContextScaleCTM( maContextHolder.get(), +1, -1 );
nY = /*mnHeight*/ - (nY + nHeight);
// prepare the target context
NSGraphicsContext* pOrigNSCtx = [NSGraphicsContext currentContext];
[pOrigNSCtx retain];
// create new context
NSGraphicsContext* pDrawNSCtx = [NSGraphicsContext graphicsContextWithCGContext: maContextHolder.get() flipped: IsFlipped()];
// set it, setCurrentContext also releases the previously set one
[NSGraphicsContext setCurrentContext: pDrawNSCtx];
// draw the EPS
const NSRect aDstRect = NSMakeRect( nX, nY, nWidth, nHeight);
const bool bOK = [xEpsImage drawInRect: aDstRect];
// restore the NSGraphicsContext
[NSGraphicsContext setCurrentContext: pOrigNSCtx];
[pOrigNSCtx release]; // restore the original retain count
maContextHolder.restoreState();
// mark the destination rectangle as updated
RefreshRect( aDstRect );
return bOK;
}
#endif
void AquaSalGraphics::drawLine( tools::Long nX1, tools::Long nY1, tools::Long nX2, tools::Long nY2 )
{
if( nX1 == nX2 && nY1 == nY2 )
{
// #i109453# platform independent code expects at least one pixel to be drawn
drawPixel( nX1, nY1 );
return;
}
if( !CheckContext() )
return;
CGContextBeginPath( maContextHolder.get() );
CGContextMoveToPoint( maContextHolder.get(), static_cast<float>(nX1)+0.5, static_cast<float>(nY1)+0.5 );
CGContextAddLineToPoint( maContextHolder.get(), static_cast<float>(nX2)+0.5, static_cast<float>(nY2)+0.5 );
CGContextDrawPath( maContextHolder.get(), kCGPathStroke );
tools::Rectangle aRefreshRect( nX1, nY1, nX2, nY2 );
(void) aRefreshRect;
// Is a call to RefreshRect( aRefreshRect ) missing here?
}
void AquaSalGraphics::drawMask( const SalTwoRect& rPosAry, const SalBitmap& rSalBitmap, Color nMaskColor )
{
if( !CheckContext() )
return;
const QuartzSalBitmap& rBitmap = static_cast<const QuartzSalBitmap&>(rSalBitmap);
CGImageRef xImage = rBitmap.CreateColorMask( rPosAry.mnSrcX, rPosAry.mnSrcY,
rPosAry.mnSrcWidth, rPosAry.mnSrcHeight,
nMaskColor );
if( !xImage )
return;
const CGRect aDstRect = CGRectMake(rPosAry.mnDestX, rPosAry.mnDestY, rPosAry.mnDestWidth, rPosAry.mnDestHeight);
CGContextDrawImage( maContextHolder.get(), aDstRect, xImage );
CGImageRelease( xImage );
RefreshRect( aDstRect );
}
void AquaSalGraphics::drawPixel( tools::Long nX, tools::Long nY )
{
// draw pixel with current line color
ImplDrawPixel( nX, nY, maLineColor );
}
void AquaSalGraphics::drawPixel( tools::Long nX, tools::Long nY, Color nColor )
{
const RGBAColor aPixelColor( nColor );
ImplDrawPixel( nX, nY, aPixelColor );
}
bool AquaSalGraphics::drawPolyLine(
const basegfx::B2DHomMatrix& rObjectToDevice,
const basegfx::B2DPolygon& rPolyLine,
double fTransparency,
double fLineWidth,
const std::vector< double >* pStroke, // MM01
basegfx::B2DLineJoin eLineJoin,
css::drawing::LineCap eLineCap,
double fMiterMinimumAngle,
bool bPixelSnapHairline)
{
// MM01 check done for simple reasons
if(!rPolyLine.count() || fTransparency < 0.0 || fTransparency > 1.0)
{
return true;
}
#ifdef IOS
if( !CheckContext() )
return false;
#endif
// tdf#124848 get correct LineWidth in discrete coordinates,
if(fLineWidth == 0) // hairline
fLineWidth = 1.0;
else // Adjust line width for object-to-device scale.
fLineWidth = (rObjectToDevice * basegfx::B2DVector(fLineWidth, 0)).getLength();
// #i101491# Aqua does not support B2DLineJoin::NONE; return false to use
// the fallback (own geometry preparation)
// #i104886# linejoin-mode and thus the above only applies to "fat" lines
if( (basegfx::B2DLineJoin::NONE == eLineJoin) && (fLineWidth > 1.3) )
return false;
// MM01 need to do line dashing as fallback stuff here now
const double fDotDashLength(nullptr != pStroke ? std::accumulate(pStroke->begin(), pStroke->end(), 0.0) : 0.0);
const bool bStrokeUsed(0.0 != fDotDashLength);
assert(!bStrokeUsed || (bStrokeUsed && pStroke));
basegfx::B2DPolyPolygon aPolyPolygonLine;
if(bStrokeUsed)
{
// apply LineStyle
basegfx::utils::applyLineDashing(
rPolyLine, // source
*pStroke, // pattern
&aPolyPolygonLine, // target for lines
nullptr, // target for gaps
fDotDashLength); // full length if available
}
else
{
// no line dashing, just copy
aPolyPolygonLine.append(rPolyLine);
}
// Transform to DeviceCoordinates, get DeviceLineWidth, execute PixelSnapHairline
aPolyPolygonLine.transform(rObjectToDevice);
if(bPixelSnapHairline) { aPolyPolygonLine = basegfx::utils::snapPointsOfHorizontalOrVerticalEdges(aPolyPolygonLine); }
// setup line attributes
CGLineJoin aCGLineJoin = kCGLineJoinMiter;
switch( eLineJoin )
{
case basegfx::B2DLineJoin::NONE: aCGLineJoin = /*TODO?*/kCGLineJoinMiter; break;
case basegfx::B2DLineJoin::Bevel: aCGLineJoin = kCGLineJoinBevel; break;
case basegfx::B2DLineJoin::Miter: aCGLineJoin = kCGLineJoinMiter; break;
case basegfx::B2DLineJoin::Round: aCGLineJoin = kCGLineJoinRound; break;
}
// convert miter minimum angle to miter limit
CGFloat fCGMiterLimit = 1.0 / sin(fMiterMinimumAngle / 2.0);
// setup cap attribute
CGLineCap aCGLineCap(kCGLineCapButt);
switch(eLineCap)
{
default: // css::drawing::LineCap_BUTT:
{
aCGLineCap = kCGLineCapButt;
break;
}
case css::drawing::LineCap_ROUND:
{
aCGLineCap = kCGLineCapRound;
break;
}
case css::drawing::LineCap_SQUARE:
{
aCGLineCap = kCGLineCapSquare;
break;
}
}
// setup poly-polygon path
CGMutablePathRef xPath = CGPathCreateMutable();
// MM01 todo - I assume that this is OKAY to be done in one run for quartz
// but this NEEDS to be checked/verified
for(sal_uInt32 a(0); a < aPolyPolygonLine.count(); a++)
{
const basegfx::B2DPolygon aPolyLine(aPolyPolygonLine.getB2DPolygon(a));
AddPolygonToPath(
xPath,
aPolyLine,
aPolyLine.isClosed(),
!getAntiAlias(),
true);
}
const CGRect aRefreshRect = CGPathGetBoundingBox( xPath );
// #i97317# workaround for Quartz having problems with drawing small polygons
if( (aRefreshRect.size.width > 0.125) || (aRefreshRect.size.height > 0.125) )
{
// use the path to prepare the graphics context
maContextHolder.saveState();
CGContextBeginPath( maContextHolder.get() );
CGContextAddPath( maContextHolder.get(), xPath );
// draw path with antialiased line
CGContextSetShouldAntialias( maContextHolder.get(), getAntiAlias() );
CGContextSetAlpha( maContextHolder.get(), 1.0 - fTransparency );
CGContextSetLineJoin( maContextHolder.get(), aCGLineJoin );
CGContextSetLineCap( maContextHolder.get(), aCGLineCap );
CGContextSetLineWidth( maContextHolder.get(), fLineWidth );
CGContextSetMiterLimit(maContextHolder.get(), fCGMiterLimit);
CGContextDrawPath( maContextHolder.get(), kCGPathStroke );
maContextHolder.restoreState();
// mark modified rectangle as updated
RefreshRect( aRefreshRect );
}
CGPathRelease( xPath );
return true;
}
bool AquaSalGraphics::drawPolyLineBezier( sal_uInt32, const Point*, const PolyFlags* )
{
return false;
}
bool AquaSalGraphics::drawPolyPolygon(
const basegfx::B2DHomMatrix& rObjectToDevice,
const basegfx::B2DPolyPolygon& rPolyPolygon,
double fTransparency)
{
#ifdef IOS
if (!maContextHolder.isSet())
return true;
#endif
// short circuit if there is nothing to do
if( rPolyPolygon.count() == 0 )
return true;
// ignore invisible polygons
if( (fTransparency >= 1.0) || (fTransparency < 0) )
return true;
// Fallback: Transform to DeviceCoordinates
basegfx::B2DPolyPolygon aPolyPolygon(rPolyPolygon);
aPolyPolygon.transform(rObjectToDevice);
// setup poly-polygon path
CGMutablePathRef xPath = CGPathCreateMutable();
// tdf#120252 Use the correct, already transformed PolyPolygon (as long as
// the transformation is not used here...)
for(auto const& rPolygon : aPolyPolygon)
{
AddPolygonToPath( xPath, rPolygon, true, !getAntiAlias(), IsPenVisible() );
}
const CGRect aRefreshRect = CGPathGetBoundingBox( xPath );
// #i97317# workaround for Quartz having problems with drawing small polygons
if( (aRefreshRect.size.width > 0.125) || (aRefreshRect.size.height > 0.125) )
{
// prepare drawing mode
CGPathDrawingMode eMode;
if( IsBrushVisible() && IsPenVisible() )
{
eMode = kCGPathEOFillStroke;
}
else if( IsPenVisible() )
{
eMode = kCGPathStroke;
}
else if( IsBrushVisible() )
{
eMode = kCGPathEOFill;
}
else
{
SAL_WARN( "vcl.quartz", "Neither pen nor brush visible" );
CGPathRelease( xPath );
return true;
}
// use the path to prepare the graphics context
maContextHolder.saveState();
CGContextBeginPath( maContextHolder.get() );
CGContextAddPath( maContextHolder.get(), xPath );
// draw path with antialiased polygon
CGContextSetShouldAntialias( maContextHolder.get(), getAntiAlias() );
CGContextSetAlpha( maContextHolder.get(), 1.0 - fTransparency );
CGContextDrawPath( maContextHolder.get(), eMode );
maContextHolder.restoreState();
// mark modified rectangle as updated
RefreshRect( aRefreshRect );
}
CGPathRelease( xPath );
return true;
}
void AquaSalGraphics::drawPolyPolygon( sal_uInt32 nPolyCount, const sal_uInt32 *pPoints, const Point* *ppPtAry )
{
if( nPolyCount <= 0 )
return;
if( !CheckContext() )
return;
// find bound rect
tools::Long leftX = 0, topY = 0, maxWidth = 0, maxHeight = 0;
getBoundRect( pPoints[0], ppPtAry[0], leftX, topY, maxWidth, maxHeight );
for( sal_uInt32 n = 1; n < nPolyCount; n++ )
{
tools::Long nX = leftX, nY = topY, nW = maxWidth, nH = maxHeight;
getBoundRect( pPoints[n], ppPtAry[n], nX, nY, nW, nH );
if( nX < leftX )
{
maxWidth += leftX - nX;
leftX = nX;
}
if( nY < topY )
{
maxHeight += topY - nY;
topY = nY;
}
if( nX + nW > leftX + maxWidth )
{
maxWidth = nX + nW - leftX;
}
if( nY + nH > topY + maxHeight )
{
maxHeight = nY + nH - topY;
}
}
// prepare drawing mode
CGPathDrawingMode eMode;
if( IsBrushVisible() && IsPenVisible() )
{
eMode = kCGPathEOFillStroke;
}
else if( IsPenVisible() )
{
eMode = kCGPathStroke;
}
else if( IsBrushVisible() )
{
eMode = kCGPathEOFill;
}
else
{
SAL_WARN( "vcl.quartz", "Neither pen nor brush visible" );
return;
}
// convert to CGPath
CGContextBeginPath( maContextHolder.get() );
if( IsPenVisible() )
{
for( sal_uInt32 nPoly = 0; nPoly < nPolyCount; nPoly++ )
{
const sal_uInt32 nPoints = pPoints[nPoly];
if( nPoints > 1 )
{
const Point *pPtAry = ppPtAry[nPoly];
float fX, fY;
alignLinePoint( pPtAry, fX, fY );
CGContextMoveToPoint( maContextHolder.get(), fX, fY );
pPtAry++;
for( sal_uInt32 nPoint = 1; nPoint < nPoints; nPoint++, pPtAry++ )
{
alignLinePoint( pPtAry, fX, fY );
CGContextAddLineToPoint( maContextHolder.get(), fX, fY );
}
CGContextClosePath(maContextHolder.get());
}
}
}
else
{
for( sal_uInt32 nPoly = 0; nPoly < nPolyCount; nPoly++ )
{
const sal_uInt32 nPoints = pPoints[nPoly];
if( nPoints > 1 )
{
const Point *pPtAry = ppPtAry[nPoly];
CGContextMoveToPoint( maContextHolder.get(), pPtAry->getX(), pPtAry->getY() );
pPtAry++;
for( sal_uInt32 nPoint = 1; nPoint < nPoints; nPoint++, pPtAry++ )
{
CGContextAddLineToPoint( maContextHolder.get(), pPtAry->getX(), pPtAry->getY() );
}
CGContextClosePath(maContextHolder.get());
}
}
}
CGContextDrawPath( maContextHolder.get(), eMode );
RefreshRect( leftX, topY, maxWidth, maxHeight );
}
void AquaSalGraphics::drawPolygon( sal_uInt32 nPoints, const Point *pPtAry )
{
if( nPoints <= 1 )
return;
if( !CheckContext() )
return;
tools::Long nX = 0, nY = 0, nWidth = 0, nHeight = 0;
getBoundRect( nPoints, pPtAry, nX, nY, nWidth, nHeight );
CGPathDrawingMode eMode;
if( IsBrushVisible() && IsPenVisible() )
{
eMode = kCGPathEOFillStroke;
}
else if( IsPenVisible() )
{
eMode = kCGPathStroke;
}
else if( IsBrushVisible() )
{
eMode = kCGPathEOFill;
}
else
{
SAL_WARN( "vcl.quartz", "Neither pen nor brush visible" );
return;
}
CGContextBeginPath( maContextHolder.get() );
if( IsPenVisible() )
{
float fX, fY;
alignLinePoint( pPtAry, fX, fY );
CGContextMoveToPoint( maContextHolder.get(), fX, fY );
pPtAry++;
for( sal_uInt32 nPoint = 1; nPoint < nPoints; nPoint++, pPtAry++ )
{
alignLinePoint( pPtAry, fX, fY );
CGContextAddLineToPoint( maContextHolder.get(), fX, fY );
}
}
else
{
CGContextMoveToPoint( maContextHolder.get(), pPtAry->getX(), pPtAry->getY() );
pPtAry++;
for( sal_uInt32 nPoint = 1; nPoint < nPoints; nPoint++, pPtAry++ )
{
CGContextAddLineToPoint( maContextHolder.get(), pPtAry->getX(), pPtAry->getY() );
}
}
CGContextClosePath( maContextHolder.get() );
CGContextDrawPath( maContextHolder.get(), eMode );
RefreshRect( nX, nY, nWidth, nHeight );
}
bool AquaSalGraphics::drawPolygonBezier( sal_uInt32, const Point*, const PolyFlags* )
{
return false;
}
bool AquaSalGraphics::drawPolyPolygonBezier( sal_uInt32, const sal_uInt32*,
const Point* const*, const PolyFlags* const* )
{
return false;
}
void AquaSalGraphics::drawRect(
tools::Long nX, tools::Long nY, tools::Long nWidth, tools::Long nHeight )
{
if( !CheckContext() )
return;
CGRect aRect( CGRectMake(nX, nY, nWidth, nHeight) );
if( IsPenVisible() )
{
aRect.origin.x += 0.5;
aRect.origin.y += 0.5;
aRect.size.width -= 1;
aRect.size.height -= 1;
}
if( IsBrushVisible() )
{
CGContextFillRect( maContextHolder.get(), aRect );
}
if( IsPenVisible() )
{
CGContextStrokeRect( maContextHolder.get(), aRect );
}
RefreshRect( nX, nY, nWidth, nHeight );
}
void AquaSalGraphics::drawPolyLine( sal_uInt32 nPoints, const Point *pPtAry )
{
if( nPoints < 1 )
return;
if( !CheckContext() )
return;
tools::Long nX = 0, nY = 0, nWidth = 0, nHeight = 0;
getBoundRect( nPoints, pPtAry, nX, nY, nWidth, nHeight );
float fX, fY;
CGContextBeginPath( maContextHolder.get() );
alignLinePoint( pPtAry, fX, fY );
CGContextMoveToPoint( maContextHolder.get(), fX, fY );
pPtAry++;
for( sal_uInt32 nPoint = 1; nPoint < nPoints; nPoint++, pPtAry++ )
{
alignLinePoint( pPtAry, fX, fY );
CGContextAddLineToPoint( maContextHolder.get(), fX, fY );
}
CGContextStrokePath(maContextHolder.get());
RefreshRect( nX, nY, nWidth, nHeight );
}
sal_uInt16 AquaSalGraphics::GetBitCount() const
{
sal_uInt16 nBits = mnBitmapDepth ? mnBitmapDepth : 32;//24;
return nBits;
}
std::shared_ptr<SalBitmap> AquaSalGraphics::getBitmap(
tools::Long nX, tools::Long nY, tools::Long nDX, tools::Long nDY )
{
SAL_WARN_IF(!maLayer.isSet(), "vcl.quartz", "AquaSalGraphics::getBitmap() with no layer this=" << this);
ApplyXorContext();
std::shared_ptr<QuartzSalBitmap> pBitmap = std::make_shared<QuartzSalBitmap>();
if (!pBitmap->Create(maLayer, mnBitmapDepth, nX, nY, nDX, nDY, IsFlipped()))
{
pBitmap = nullptr;
}
return pBitmap;
}
SystemGraphicsData AquaSalGraphics::GetGraphicsData() const
{
SystemGraphicsData aRes;
aRes.nSize = sizeof(aRes);
aRes.rCGContext = maContextHolder.get();
return aRes;
}
tools::Long AquaSalGraphics::GetGraphicsWidth() const
{
tools::Long w = 0;
if( maContextHolder.isSet() && (
#ifndef IOS
mbWindow ||
#endif
mbVirDev) )
{
w = mnWidth;
}
#ifndef IOS
if( w == 0 )
{
if( mbWindow && mpFrame )
{
w = mpFrame->maGeometry.nWidth;
}
}
#endif
return w;
}
Color AquaSalGraphics::getPixel( tools::Long nX, tools::Long nY )
{
// return default value on printers or when out of bounds
if (!maLayer.isSet() || (nX < 0) || (nX >= mnWidth) ||
(nY < 0) || (nY >= mnHeight))
{
return COL_BLACK;
}
// prepare creation of matching a CGBitmapContext
#if defined OSL_BIGENDIAN
struct{ unsigned char b, g, r, a; } aPixel;
#else
struct{ unsigned char a, r, g, b; } aPixel;
#endif
// create a one-pixel bitmap context
// TODO: is it worth to cache it?
CGContextRef xOnePixelContext =
CGBitmapContextCreate( &aPixel, 1, 1, 8, 32,
GetSalData()->mxRGBSpace,
uint32_t(kCGImageAlphaNoneSkipFirst) | uint32_t(kCGBitmapByteOrder32Big) );
// update this graphics layer
ApplyXorContext();
// copy the requested pixel into the bitmap context
if( IsFlipped() )
{
nY = mnHeight - nY;
}
const CGPoint aCGPoint = CGPointMake(-nX, -nY);
CGContextDrawLayerAtPoint(xOnePixelContext, aCGPoint, maLayer.get());
CGContextRelease( xOnePixelContext );
Color nColor( aPixel.r, aPixel.g, aPixel.b );
return nColor;
}
void AquaSalGraphics::GetResolution( sal_Int32& rDPIX, sal_Int32& rDPIY )
{
#ifndef IOS
if( !mnRealDPIY )
{
initResolution( (mbWindow && mpFrame) ? mpFrame->getNSWindow() : nil );
}
rDPIX = mnRealDPIX;
rDPIY = mnRealDPIY;
#else
// This *must* be 96 or else the iOS app will behave very badly (tiles are scaled wrongly and
// don't match each others at their boundaries, and other issues). But *why* it must be 96 I
// have no idea. The commit that changed it to 96 from (the arbitrary) 200 did not say. If you
// know where else 96 is explicitly or implicitly hard-coded, please modify this comment.
// Follow-up: It might be this: in 'online', loleaflet/src/map/Map.js:
// 15 = 1440 twips-per-inch / 96 dpi.
// Chosen to match previous hardcoded value of 3840 for
// the current tile pixel size of 256.
rDPIX = rDPIY = 96;
#endif
}
void AquaSalGraphics::ImplDrawPixel( tools::Long nX, tools::Long nY, const RGBAColor& rColor )
{
if( !CheckContext() )
{
return;
}
// overwrite the fill color
CGContextSetFillColor( maContextHolder.get(), rColor.AsArray() );
// draw 1x1 rect, there is no pixel drawing in Quartz
const CGRect aDstRect = CGRectMake(nX, nY, 1, 1);
CGContextFillRect( maContextHolder.get(), aDstRect );
RefreshRect( aDstRect );
// reset the fill color
CGContextSetFillColor( maContextHolder.get(), maFillColor.AsArray() );
}
#ifndef IOS
void AquaSalGraphics::initResolution(NSWindow* nsWindow)
{
if (!nsWindow)
{
if (Application::IsBitmapRendering())
mnRealDPIX = mnRealDPIY = 96;
return;
}
// #i100617# read DPI only once; there is some kind of weird caching going on
// if the main screen changes
// FIXME: this is really unfortunate and needs to be investigated
SalData* pSalData = GetSalData();
if( pSalData->mnDPIX == 0 || pSalData->mnDPIY == 0 )
{
NSScreen* pScreen = nil;
/* #i91301#
many woes went into the try to have different resolutions
on different screens. The result of these trials is that OOo is not ready
for that yet, vcl and applications would need to be adapted.
Unfortunately this is not possible in the 3.0 timeframe.
So let's stay with one resolution for all Windows and VirtualDevices
which is the resolution of the main screen
This of course also means that measurements are exact only on the main screen.
For activating different resolutions again just comment out the two lines below.
if( pWin )
pScreen = [pWin screen];
*/
if( pScreen == nil )
{
NSArray* pScreens = [NSScreen screens];
if( pScreens && [pScreens count] > 0)
{
pScreen = [pScreens objectAtIndex: 0];
}
}
mnRealDPIX = mnRealDPIY = 96;
if( pScreen )
{
NSDictionary* pDev = [pScreen deviceDescription];
if( pDev )
{
NSNumber* pVal = [pDev objectForKey: @"NSScreenNumber"];
if( pVal )
{
// FIXME: casting a long to CGDirectDisplayID is evil, but
// Apple suggest to do it this way
const CGDirectDisplayID nDisplayID = static_cast<CGDirectDisplayID>([pVal longValue]);
const CGSize aSize = CGDisplayScreenSize( nDisplayID ); // => result is in millimeters
mnRealDPIX = static_cast<sal_Int32>((CGDisplayPixelsWide( nDisplayID ) * 25.4) / aSize.width);
mnRealDPIY = static_cast<sal_Int32>((CGDisplayPixelsHigh( nDisplayID ) * 25.4) / aSize.height);
}
else
{
OSL_FAIL( "no resolution found in device description" );
}
}
else
{
OSL_FAIL( "no device description" );
}
}
else
{
OSL_FAIL( "no screen found" );
}
// #i107076# maintaining size-WYSIWYG-ness causes many problems for
// low-DPI, high-DPI or for mis-reporting devices
// => it is better to limit the calculation result then
static const int nMinDPI = 72;
if( (mnRealDPIX < nMinDPI) || (mnRealDPIY < nMinDPI) )
{
mnRealDPIX = mnRealDPIY = nMinDPI;
}
// Note that on a Retina display, the "mnRealDPIX" as
// calculated above is not the true resolution of the display,
// but the "logical" one, or whatever the correct terminology
// is. (For instance on a 5K 27in iMac, it's 108.) So at
// least currently, it won't be over 200. I don't know whether
// this test is a "sanity check", or whether there is some
// real reason to limit this to 200.
static const int nMaxDPI = 200;
if( (mnRealDPIX > nMaxDPI) || (mnRealDPIY > nMaxDPI) )
{
mnRealDPIX = mnRealDPIY = nMaxDPI;
}
// for OSX any anisotropy reported for the display resolution is best ignored (e.g. TripleHead2Go)
mnRealDPIX = mnRealDPIY = (mnRealDPIX + mnRealDPIY + 1) / 2;
pSalData->mnDPIX = mnRealDPIX;
pSalData->mnDPIY = mnRealDPIY;
}
else
{
mnRealDPIX = pSalData->mnDPIX;
mnRealDPIY = pSalData->mnDPIY;
}
}
#endif
void AquaSalGraphics::invert(
tools::Long nX, tools::Long nY, tools::Long nWidth, tools::Long nHeight, SalInvert nFlags )
{
if ( CheckContext() )
{
CGRect aCGRect = CGRectMake( nX, nY, nWidth, nHeight);
maContextHolder.saveState();
if ( nFlags & SalInvert::TrackFrame )
{
const CGFloat dashLengths[2] = { 4.0, 4.0 }; // for drawing dashed line
CGContextSetBlendMode( maContextHolder.get(), kCGBlendModeDifference );
CGContextSetRGBStrokeColor ( maContextHolder.get(), 1.0, 1.0, 1.0, 1.0 );
CGContextSetLineDash ( maContextHolder.get(), 0, dashLengths, 2 );
CGContextSetLineWidth( maContextHolder.get(), 2.0);
CGContextStrokeRect ( maContextHolder.get(), aCGRect );
}
else if ( nFlags & SalInvert::N50 )
{
//CGContextSetAllowsAntialiasing( maContextHolder.get(), false );
CGContextSetBlendMode(maContextHolder.get(), kCGBlendModeDifference);
CGContextAddRect( maContextHolder.get(), aCGRect );
Pattern50Fill();
}
else // just invert
{
CGContextSetBlendMode(maContextHolder.get(), kCGBlendModeDifference);
CGContextSetRGBFillColor ( maContextHolder.get(),1.0, 1.0, 1.0 , 1.0 );
CGContextFillRect ( maContextHolder.get(), aCGRect );
}
maContextHolder.restoreState();
RefreshRect( aCGRect );
}
}
namespace {
CGPoint* makeCGptArray(sal_uInt32 nPoints, const Point* pPtAry)
{
CGPoint *CGpoints = new CGPoint[nPoints];
for(sal_uLong i=0;i<nPoints;i++)
{
CGpoints[i].x = pPtAry[i].getX();
CGpoints[i].y = pPtAry[i].getY();
}
return CGpoints;
}
}
void AquaSalGraphics::invert( sal_uInt32 nPoints, const Point* pPtAry, SalInvert nSalFlags )
{
if ( CheckContext() )
{
maContextHolder.saveState();
CGPoint* CGpoints = makeCGptArray(nPoints,pPtAry);
CGContextAddLines ( maContextHolder.get(), CGpoints, nPoints );
if ( nSalFlags & SalInvert::TrackFrame )
{
const CGFloat dashLengths[2] = { 4.0, 4.0 }; // for drawing dashed line
CGContextSetBlendMode( maContextHolder.get(), kCGBlendModeDifference );
CGContextSetRGBStrokeColor ( maContextHolder.get(), 1.0, 1.0, 1.0, 1.0 );
CGContextSetLineDash ( maContextHolder.get(), 0, dashLengths, 2 );
CGContextSetLineWidth( maContextHolder.get(), 2.0);
CGContextStrokePath ( maContextHolder.get() );
}
else if ( nSalFlags & SalInvert::N50 )
{
CGContextSetBlendMode(maContextHolder.get(), kCGBlendModeDifference);
Pattern50Fill();
}
else // just invert
{
CGContextSetBlendMode( maContextHolder.get(), kCGBlendModeDifference );
CGContextSetRGBFillColor( maContextHolder.get(), 1.0, 1.0, 1.0, 1.0 );
CGContextFillPath( maContextHolder.get() );
}
const CGRect aRefreshRect = CGContextGetClipBoundingBox(maContextHolder.get());
maContextHolder.restoreState();
delete [] CGpoints;
RefreshRect( aRefreshRect );
}
}
void AquaSalGraphics::Pattern50Fill()
{
static const CGFloat aFillCol[4] = { 1,1,1,1 };
static const CGPatternCallbacks aCallback = { 0, &DrawPattern50, nullptr };
static const CGColorSpaceRef mxP50Space = CGColorSpaceCreatePattern( GetSalData()->mxRGBSpace );
static const CGPatternRef mxP50Pattern = CGPatternCreate( nullptr, CGRectMake( 0, 0, 4, 4 ),
CGAffineTransformIdentity, 4, 4,
kCGPatternTilingConstantSpacing,
false, &aCallback );
SAL_WARN_IF( !maContextHolder.get(), "vcl.quartz", "maContextHolder.get() is NULL" );
CGContextSetFillColorSpace( maContextHolder.get(), mxP50Space );
CGContextSetFillPattern( maContextHolder.get(), mxP50Pattern, aFillCol );
CGContextFillPath( maContextHolder.get() );
}
void AquaSalGraphics::ResetClipRegion()
{
// release old path and indicate no clipping
if( mxClipPath )
{
CGPathRelease( mxClipPath );
mxClipPath = nullptr;
}
if( CheckContext() )
{
SetState();
}
}
void AquaSalGraphics::SetState()
{
maContextHolder.restoreState();
maContextHolder.saveState();
// setup clipping
if( mxClipPath )
{
CGContextBeginPath( maContextHolder.get() ); // discard any existing path
CGContextAddPath( maContextHolder.get(), mxClipPath ); // set the current path to the clipping path
CGContextClip( maContextHolder.get() ); // use it for clipping
}
// set RGB colorspace and line and fill colors
CGContextSetFillColor( maContextHolder.get(), maFillColor.AsArray() );
CGContextSetStrokeColor( maContextHolder.get(), maLineColor.AsArray() );
CGContextSetShouldAntialias( maContextHolder.get(), false );
if( mnXorMode == 2 )
{
CGContextSetBlendMode( maContextHolder.get(), kCGBlendModeDifference );
}
}
void AquaSalGraphics::SetLineColor()
{
maLineColor.SetAlpha( 0.0 ); // transparent
if( CheckContext() )
{
CGContextSetRGBStrokeColor( maContextHolder.get(), maLineColor.GetRed(), maLineColor.GetGreen(),
maLineColor.GetBlue(), maLineColor.GetAlpha() );
}
}
void AquaSalGraphics::SetLineColor( Color nColor )
{
maLineColor = RGBAColor( nColor );
if( CheckContext() )
{
CGContextSetRGBStrokeColor( maContextHolder.get(), maLineColor.GetRed(), maLineColor.GetGreen(),
maLineColor.GetBlue(), maLineColor.GetAlpha() );
}
}
void AquaSalGraphics::SetFillColor()
{
maFillColor.SetAlpha( 0.0 ); // transparent
if( CheckContext() )
{
CGContextSetRGBFillColor( maContextHolder.get(), maFillColor.GetRed(), maFillColor.GetGreen(),
maFillColor.GetBlue(), maFillColor.GetAlpha() );
}
}
void AquaSalGraphics::SetFillColor( Color nColor )
{
maFillColor = RGBAColor( nColor );
if( CheckContext() )
{
CGContextSetRGBFillColor( maContextHolder.get(), maFillColor.GetRed(), maFillColor.GetGreen(),
maFillColor.GetBlue(), maFillColor.GetAlpha() );
}
}
bool AquaSalGraphics::supportsOperation( OutDevSupportType eType ) const
{
bool bRet = false;
switch( eType )
{
case OutDevSupportType::TransparentRect:
case OutDevSupportType::B2DDraw:
bRet = true;
break;
default:
break;
}
return bRet;
}
bool AquaSalGraphics::setClipRegion( const vcl::Region& i_rClip )
{
// release old clip path
if( mxClipPath )
{
CGPathRelease( mxClipPath );
mxClipPath = nullptr;
}
mxClipPath = CGPathCreateMutable();
// set current path, either as polypolgon or sequence of rectangles
RectangleVector aRectangles;
i_rClip.GetRegionRectangles(aRectangles);
for(const auto& rRect : aRectangles)
{
const tools::Long nW(rRect.Right() - rRect.Left() + 1); // uses +1 logic in original
if(nW)
{
const tools::Long nH(rRect.Bottom() - rRect.Top() + 1); // uses +1 logic in original
if(nH)
{
const CGRect aRect = CGRectMake( rRect.Left(), rRect.Top(), nW, nH);
CGPathAddRect( mxClipPath, nullptr, aRect );
}
}
}
// set the current path as clip region
if( CheckContext() )
{
SetState();
}
return true;
}
void AquaSalGraphics::SetROPFillColor( SalROPColor nROPColor )
{
if( ! mbPrinter )
{
SetFillColor( ImplGetROPColor( nROPColor ) );
}
}
void AquaSalGraphics::SetROPLineColor( SalROPColor nROPColor )
{
if( ! mbPrinter )
{
SetLineColor( ImplGetROPColor( nROPColor ) );
}
}
void AquaSalGraphics::SetXORMode( bool bSet, bool bInvertOnly )
{
// return early if XOR mode remains unchanged
if( mbPrinter )
{
return;
}
if( ! bSet && mnXorMode == 2 )
{
CGContextSetBlendMode( maContextHolder.get(), kCGBlendModeNormal );
mnXorMode = 0;
return;
}
else if( bSet && bInvertOnly && mnXorMode == 0)
{
CGContextSetBlendMode( maContextHolder.get(), kCGBlendModeDifference );
mnXorMode = 2;
return;
}
if( (mpXorEmulation == nullptr) && !bSet )
{
return;
}
if( (mpXorEmulation != nullptr) && (bSet == mpXorEmulation->IsEnabled()) )
{
return;
}
if( !CheckContext() )
{
return;
}
// prepare XOR emulation
if( !mpXorEmulation )
{
mpXorEmulation = new XorEmulation();
mpXorEmulation->SetTarget(mnWidth, mnHeight, mnBitmapDepth, maContextHolder.get(), maLayer.get());
}
// change the XOR mode
if( bSet )
{
mpXorEmulation->Enable();
maContextHolder.set(mpXorEmulation->GetMaskContext());
mnXorMode = 1;
}
else
{
mpXorEmulation->UpdateTarget();
mpXorEmulation->Disable();
maContextHolder.set(mpXorEmulation->GetTargetContext());
mnXorMode = 0;
}
}
#ifndef IOS
void AquaSalGraphics::updateResolution()
{
SAL_WARN_IF( !mbWindow, "vcl", "updateResolution on inappropriate graphics" );
initResolution( (mbWindow && mpFrame) ? mpFrame->getNSWindow() : nil );
}
#endif
XorEmulation::XorEmulation()
: m_xTargetLayer( nullptr )
, m_xTargetContext( nullptr )
, m_xMaskContext( nullptr )
, m_xTempContext( nullptr )
, m_pMaskBuffer( nullptr )
, m_pTempBuffer( nullptr )
, m_nBufferLongs( 0 )
, m_bIsEnabled( false )
{
SAL_INFO( "vcl.quartz", "XorEmulation::XorEmulation() this=" << this );
}
XorEmulation::~XorEmulation()
{
SAL_INFO( "vcl.quartz", "XorEmulation::~XorEmulation() this=" << this );
Disable();
SetTarget( 0, 0, 0, nullptr, nullptr );
}
void XorEmulation::SetTarget( int nWidth, int nHeight, int nTargetDepth,
CGContextRef xTargetContext, CGLayerRef xTargetLayer )
{
SAL_INFO( "vcl.quartz", "XorEmulation::SetTarget() this=" << this <<
" (" << nWidth << "x" << nHeight << ") depth=" << nTargetDepth <<
" context=" << xTargetContext << " layer=" << xTargetLayer );
// prepare to replace old mask+temp context
if( m_xMaskContext )
{
// cleanup the mask context
CGContextRelease( m_xMaskContext );
delete[] m_pMaskBuffer;
m_xMaskContext = nullptr;
m_pMaskBuffer = nullptr;
// cleanup the temp context if needed
if( m_xTempContext )
{
CGContextRelease( m_xTempContext );
delete[] m_pTempBuffer;
m_xTempContext = nullptr;
m_pTempBuffer = nullptr;
}
}
// return early if there is nothing more to do
if( !xTargetContext )
{
return;
}
// retarget drawing operations to the XOR mask
m_xTargetLayer = xTargetLayer;
m_xTargetContext = xTargetContext;
// prepare creation of matching CGBitmaps
CGColorSpaceRef aCGColorSpace = GetSalData()->mxRGBSpace;
CGBitmapInfo aCGBmpInfo = kCGImageAlphaNoneSkipFirst;
int nBitDepth = nTargetDepth;
if( !nBitDepth )
{
nBitDepth = 32;
}
int nBytesPerRow = 4;
const size_t nBitsPerComponent = (nBitDepth == 16) ? 5 : 8;
if( nBitDepth <= 8 )
{
aCGColorSpace = GetSalData()->mxGraySpace;
aCGBmpInfo = kCGImageAlphaNone;
nBytesPerRow = 1;
}
nBytesPerRow *= nWidth;
m_nBufferLongs = (nHeight * nBytesPerRow + sizeof(sal_uLong)-1) / sizeof(sal_uLong);
// create a XorMask context
m_pMaskBuffer = new sal_uLong[ m_nBufferLongs ];
m_xMaskContext = CGBitmapContextCreate( m_pMaskBuffer,
nWidth, nHeight,
nBitsPerComponent, nBytesPerRow,
aCGColorSpace, aCGBmpInfo );
SAL_WARN_IF( !m_xMaskContext, "vcl.quartz", "mask context creation failed" );
// reset the XOR mask to black
memset( m_pMaskBuffer, 0, m_nBufferLongs * sizeof(sal_uLong) );
// a bitmap context will be needed for manual XORing
// create one unless the target context is a bitmap context
if( nTargetDepth )
{
m_pTempBuffer = static_cast<sal_uLong*>(CGBitmapContextGetData( m_xTargetContext ));
}
if( !m_pTempBuffer )
{
// create a bitmap context matching to the target context
m_pTempBuffer = new sal_uLong[ m_nBufferLongs ];
m_xTempContext = CGBitmapContextCreate( m_pTempBuffer,
nWidth, nHeight,
nBitsPerComponent, nBytesPerRow,
aCGColorSpace, aCGBmpInfo );
SAL_WARN_IF( !m_xTempContext, "vcl.quartz", "temp context creation failed" );
}
// initialize XOR mask context for drawing
CGContextSetFillColorSpace( m_xMaskContext, aCGColorSpace );
CGContextSetStrokeColorSpace( m_xMaskContext, aCGColorSpace );
CGContextSetShouldAntialias( m_xMaskContext, false );
// improve the XorMask's XOR emulation a little
// NOTE: currently only enabled for monochrome contexts
if( aCGColorSpace == GetSalData()->mxGraySpace )
{
CGContextSetBlendMode( m_xMaskContext, kCGBlendModeDifference );
}
// initialize the transformation matrix to the drawing target
const CGAffineTransform aCTM = CGContextGetCTM( xTargetContext );
CGContextConcatCTM( m_xMaskContext, aCTM );
if( m_xTempContext )
{
CGContextConcatCTM( m_xTempContext, aCTM );
}
// initialize the default XorMask graphics state
CGContextSaveGState( m_xMaskContext );
}
bool XorEmulation::UpdateTarget()
{
SAL_INFO( "vcl.quartz", "XorEmulation::UpdateTarget() this=" << this );
if( !IsEnabled() )
{
return false;
}
// update the temp bitmap buffer if needed
if( m_xTempContext )
{
SAL_WARN_IF( m_xTargetContext == nullptr, "vcl.quartz", "Target layer is NULL");
CGContextDrawLayerAtPoint( m_xTempContext, CGPointZero, m_xTargetLayer );
}
// do a manual XOR with the XorMask
// this approach suffices for simple color manipulations
// and also the complex-clipping-XOR-trick used in metafiles
const sal_uLong* pSrc = m_pMaskBuffer;
sal_uLong* pDst = m_pTempBuffer;
for( int i = m_nBufferLongs; --i >= 0;)
{
*(pDst++) ^= *(pSrc++);
}
// write back the XOR results to the target context
if( m_xTempContext )
{
CGImageRef xXorImage = CGBitmapContextCreateImage( m_xTempContext );
const int nWidth = static_cast<int>(CGImageGetWidth( xXorImage ));
const int nHeight = static_cast<int>(CGImageGetHeight( xXorImage ));
// TODO: update minimal changerect
const CGRect aFullRect = CGRectMake(0, 0, nWidth, nHeight);
CGContextDrawImage( m_xTargetContext, aFullRect, xXorImage );
CGImageRelease( xXorImage );
}
// reset the XorMask to black again
// TODO: not needed for last update
memset( m_pMaskBuffer, 0, m_nBufferLongs * sizeof(sal_uLong) );
// TODO: return FALSE if target was not changed
return true;
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */