office-gobmx/chart2/source/tools/LogarithmicRegressionCurveCalculator.cxx
Rüdiger Timm d7b8b752cb INTEGRATION: CWS changefileheader (1.7.60); FILE MERGED
2008/03/28 16:44:23 rt 1.7.60.1: #i87441# Change license header to LPGL v3.
2008-04-10 21:10:48 +00:00

194 lines
5.9 KiB
C++

/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2008 by Sun Microsystems, Inc.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* $RCSfile: LogarithmicRegressionCurveCalculator.cxx,v $
* $Revision: 1.9 $
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_chart2.hxx"
#include "LogarithmicRegressionCurveCalculator.hxx"
#include "macros.hxx"
#include "RegressionCalculationHelper.hxx"
#include <rtl/math.hxx>
#include <rtl/ustrbuf.hxx>
using namespace ::com::sun::star;
using ::rtl::OUString;
using ::rtl::OUStringBuffer;
namespace chart
{
LogarithmicRegressionCurveCalculator::LogarithmicRegressionCurveCalculator() :
m_fSlope( 0.0 ),
m_fIntercept( 0.0 )
{
::rtl::math::setNan( & m_fSlope );
::rtl::math::setNan( & m_fIntercept );
}
LogarithmicRegressionCurveCalculator::~LogarithmicRegressionCurveCalculator()
{}
// ____ XRegressionCurve ____
void SAL_CALL LogarithmicRegressionCurveCalculator::recalculateRegression(
const uno::Sequence< double >& aXValues,
const uno::Sequence< double >& aYValues )
throw (uno::RuntimeException)
{
RegressionCalculationHelper::tDoubleVectorPair aValues(
RegressionCalculationHelper::cleanup(
aXValues, aYValues,
RegressionCalculationHelper::isValidAndXPositive()));
const size_t nMax = aValues.first.size();
if( nMax == 0 )
{
::rtl::math::setNan( & m_fSlope );
::rtl::math::setNan( & m_fIntercept );
::rtl::math::setNan( & m_fCorrelationCoeffitient );
return;
}
double fAverageX = 0.0, fAverageY = 0.0;
size_t i = 0;
for( i = 0; i < nMax; ++i )
{
fAverageX += log( aValues.first[i] );
fAverageY += aValues.second[i];
}
const double fN = static_cast< double >( nMax );
fAverageX /= fN;
fAverageY /= fN;
double fQx = 0.0, fQy = 0.0, fQxy = 0.0;
for( i = 0; i < nMax; ++i )
{
double fDeltaX = log( aValues.first[i] ) - fAverageX;
double fDeltaY = aValues.second[i] - fAverageY;
fQx += fDeltaX * fDeltaX;
fQy += fDeltaY * fDeltaY;
fQxy += fDeltaX * fDeltaY;
}
m_fSlope = fQxy / fQx;
m_fIntercept = fAverageY - m_fSlope * fAverageX;
m_fCorrelationCoeffitient = fQxy / sqrt( fQx * fQy );
}
double SAL_CALL LogarithmicRegressionCurveCalculator::getCurveValue( double x )
throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
double fResult;
::rtl::math::setNan( & fResult );
if( ! ( ::rtl::math::isNan( m_fSlope ) ||
::rtl::math::isNan( m_fIntercept )))
{
fResult = m_fSlope * log( x ) + m_fIntercept;
}
return fResult;
}
uno::Sequence< geometry::RealPoint2D > SAL_CALL LogarithmicRegressionCurveCalculator::getCurveValues(
double min, double max, ::sal_Int32 nPointCount,
const uno::Reference< chart2::XScaling >& xScalingX,
const uno::Reference< chart2::XScaling >& xScalingY,
::sal_Bool bMaySkipPointsInCalculation )
throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
if( bMaySkipPointsInCalculation &&
isLogarithmicScaling( xScalingX ) &&
isLinearScaling( xScalingY ))
{
// optimize result
uno::Sequence< geometry::RealPoint2D > aResult( 2 );
aResult[0].X = min;
aResult[0].Y = this->getCurveValue( min );
aResult[1].X = max;
aResult[1].Y = this->getCurveValue( max );
return aResult;
}
return RegressionCurveCalculator::getCurveValues( min, max, nPointCount, xScalingX, xScalingY, bMaySkipPointsInCalculation );
}
OUString LogarithmicRegressionCurveCalculator::ImplGetRepresentation(
const uno::Reference< util::XNumberFormatter >& xNumFormatter,
::sal_Int32 nNumberFormatKey ) const
{
OUStringBuffer aBuf( C2U( "f(x) = " ));
bool bHaveSlope = false;
if( m_fSlope != 0.0 )
{
if( ::rtl::math::approxEqual( fabs( m_fSlope ), 1.0 ))
{
if( m_fSlope < 0 )
aBuf.append( UC_MINUS_SIGN );
}
else
{
aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, m_fSlope ));
aBuf.append( UC_SPACE );
}
aBuf.appendAscii( RTL_CONSTASCII_STRINGPARAM( "ln(x)" ));
bHaveSlope = true;
}
if( bHaveSlope )
{
if( m_fIntercept < 0.0 )
{
aBuf.append( UC_SPACE );
aBuf.append( UC_MINUS_SIGN );
aBuf.append( UC_SPACE );
aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, fabs( m_fIntercept )));
}
else if( m_fIntercept > 0.0 )
{
aBuf.appendAscii( RTL_CONSTASCII_STRINGPARAM( " + " ));
aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, m_fIntercept ));
}
}
else
{
aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, m_fIntercept ));
}
return aBuf.makeStringAndClear();
}
} // namespace chart