office-gobmx/chart2/source/view/axes/Tickmarks_Equidistant.cxx
Noel Grandin b7c260aee3 clang-tidy modernize-pass-by-value in chart2
Change-Id: I73ae444487571fb61a02a2c813c060d269d52a02
Reviewed-on: https://gerrit.libreoffice.org/c/core/+/135723
Tested-by: Jenkins
Reviewed-by: Noel Grandin <noel.grandin@collabora.co.uk>
2022-06-13 16:04:27 +02:00

626 lines
20 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include "Tickmarks_Equidistant.hxx"
#include <rtl/math.hxx>
#include <osl/diagnose.h>
#include <float.h>
#include <limits>
#include <utility>
namespace chart
{
using namespace ::com::sun::star;
using namespace ::com::sun::star::chart2;
using namespace ::rtl::math;
//static
double EquidistantTickFactory::getMinimumAtIncrement( double fMin, const ExplicitIncrementData& rIncrement )
{
//the returned value will be <= fMin and on a Major Tick given by rIncrement
if(rIncrement.Distance<=0.0)
return fMin;
double fRet = rIncrement.BaseValue +
floor( approxSub( fMin, rIncrement.BaseValue )
/ rIncrement.Distance)
*rIncrement.Distance;
if( fRet > fMin )
{
if( !approxEqual(fRet, fMin) )
fRet -= rIncrement.Distance;
}
return fRet;
}
//static
double EquidistantTickFactory::getMaximumAtIncrement( double fMax, const ExplicitIncrementData& rIncrement )
{
//the returned value will be >= fMax and on a Major Tick given by rIncrement
if(rIncrement.Distance<=0.0)
return fMax;
double fRet = rIncrement.BaseValue +
floor( approxSub( fMax, rIncrement.BaseValue )
/ rIncrement.Distance)
*rIncrement.Distance;
if( fRet < fMax )
{
if( !approxEqual(fRet, fMax) )
fRet += rIncrement.Distance;
}
return fRet;
}
EquidistantTickFactory::EquidistantTickFactory(
ExplicitScaleData aScale, ExplicitIncrementData aIncrement )
: m_rScale(std::move( aScale ))
, m_rIncrement(std::move( aIncrement ))
{
//@todo: make sure that the scale is valid for the scaling
m_pfCurrentValues.reset( new double[getTickDepth()] );
if( m_rScale.Scaling.is() )
{
m_xInverseScaling = m_rScale.Scaling->getInverseScaling();
OSL_ENSURE( m_xInverseScaling.is(), "each Scaling needs to return an inverse Scaling" );
}
double fMin = m_fScaledVisibleMin = m_rScale.Minimum;
if( m_xInverseScaling.is() )
{
m_fScaledVisibleMin = m_rScale.Scaling->doScaling(m_fScaledVisibleMin);
if(m_rIncrement.PostEquidistant )
fMin = m_fScaledVisibleMin;
}
double fMax = m_fScaledVisibleMax = m_rScale.Maximum;
if( m_xInverseScaling.is() )
{
m_fScaledVisibleMax = m_rScale.Scaling->doScaling(m_fScaledVisibleMax);
if(m_rIncrement.PostEquidistant )
fMax = m_fScaledVisibleMax;
}
m_fOuterMajorTickBorderMin = EquidistantTickFactory::getMinimumAtIncrement( fMin, m_rIncrement );
m_fOuterMajorTickBorderMax = EquidistantTickFactory::getMaximumAtIncrement( fMax, m_rIncrement );
m_fOuterMajorTickBorderMin_Scaled = m_fOuterMajorTickBorderMin;
m_fOuterMajorTickBorderMax_Scaled = m_fOuterMajorTickBorderMax;
if(m_rIncrement.PostEquidistant || !m_xInverseScaling.is())
return;
m_fOuterMajorTickBorderMin_Scaled = m_rScale.Scaling->doScaling(m_fOuterMajorTickBorderMin);
m_fOuterMajorTickBorderMax_Scaled = m_rScale.Scaling->doScaling(m_fOuterMajorTickBorderMax);
//check validity of new range: m_fOuterMajorTickBorderMin <-> m_fOuterMajorTickBorderMax
//it is assumed here, that the original range in the given Scale is valid
if( !std::isfinite(m_fOuterMajorTickBorderMin_Scaled) )
{
m_fOuterMajorTickBorderMin += m_rIncrement.Distance;
m_fOuterMajorTickBorderMin_Scaled = m_rScale.Scaling->doScaling(m_fOuterMajorTickBorderMin);
}
if( !std::isfinite(m_fOuterMajorTickBorderMax_Scaled) )
{
m_fOuterMajorTickBorderMax -= m_rIncrement.Distance;
m_fOuterMajorTickBorderMax_Scaled = m_rScale.Scaling->doScaling(m_fOuterMajorTickBorderMax);
}
}
EquidistantTickFactory::~EquidistantTickFactory()
{
}
sal_Int32 EquidistantTickFactory::getTickDepth() const
{
return static_cast<sal_Int32>(m_rIncrement.SubIncrements.size()) + 1;
}
void EquidistantTickFactory::addSubTicks( sal_Int32 nDepth, uno::Sequence< uno::Sequence< double > >& rParentTicks ) const
{
EquidistantTickIter aIter( rParentTicks, m_rIncrement, nDepth-1 );
double* pfNextParentTick = aIter.firstValue();
if(!pfNextParentTick)
return;
double fLastParentTick = *pfNextParentTick;
pfNextParentTick = aIter.nextValue();
if(!pfNextParentTick)
return;
sal_Int32 nMaxSubTickCount = getMaxTickCount( nDepth );
if(!nMaxSubTickCount)
return;
uno::Sequence< double > aSubTicks(nMaxSubTickCount);
auto pSubTicks = aSubTicks.getArray();
sal_Int32 nRealSubTickCount = 0;
sal_Int32 nIntervalCount = m_rIncrement.SubIncrements[nDepth-1].IntervalCount;
double* pValue = nullptr;
for(; pfNextParentTick; fLastParentTick=*pfNextParentTick, pfNextParentTick = aIter.nextValue())
{
for( sal_Int32 nPartTick = 1; nPartTick<nIntervalCount; nPartTick++ )
{
pValue = getMinorTick( nPartTick, nDepth
, fLastParentTick, *pfNextParentTick );
if(!pValue)
continue;
pSubTicks[nRealSubTickCount] = *pValue;
nRealSubTickCount++;
}
}
aSubTicks.realloc(nRealSubTickCount);
rParentTicks.getArray()[nDepth] = aSubTicks;
if(static_cast<sal_Int32>(m_rIncrement.SubIncrements.size())>nDepth)
addSubTicks( nDepth+1, rParentTicks );
}
sal_Int32 EquidistantTickFactory::getMaxTickCount( sal_Int32 nDepth ) const
{
//return the maximum amount of ticks
//possibly open intervals at the two ends of the region are handled as if they were completely visible
//(this is necessary for calculating the sub ticks at the borders correctly)
if( nDepth >= getTickDepth() )
return 0;
if( m_fOuterMajorTickBorderMax < m_fOuterMajorTickBorderMin )
return 0;
if( m_rIncrement.Distance<=0.0)
return 0;
double fSub;
if(m_rIncrement.PostEquidistant )
fSub = approxSub( m_fScaledVisibleMax, m_fScaledVisibleMin );
else
fSub = approxSub( m_rScale.Maximum, m_rScale.Minimum );
if (!std::isfinite(fSub))
return 0;
double fIntervalCount = fSub / m_rIncrement.Distance;
if (fIntervalCount > std::numeric_limits<sal_Int32>::max())
// Interval count too high! Bail out.
return 0;
sal_Int32 nIntervalCount = static_cast<sal_Int32>(fIntervalCount);
nIntervalCount+=3;
for(sal_Int32 nN=0; nN<nDepth-1; nN++)
{
if( m_rIncrement.SubIncrements[nN].IntervalCount>1 )
nIntervalCount *= m_rIncrement.SubIncrements[nN].IntervalCount;
}
sal_Int32 nTickCount = nIntervalCount;
if(nDepth>0 && m_rIncrement.SubIncrements[nDepth-1].IntervalCount>1)
nTickCount = nIntervalCount * (m_rIncrement.SubIncrements[nDepth-1].IntervalCount-1);
return nTickCount;
}
double* EquidistantTickFactory::getMajorTick( sal_Int32 nTick ) const
{
m_pfCurrentValues[0] = m_fOuterMajorTickBorderMin + nTick*m_rIncrement.Distance;
if(m_pfCurrentValues[0]>m_fOuterMajorTickBorderMax)
{
if( !approxEqual(m_pfCurrentValues[0],m_fOuterMajorTickBorderMax) )
return nullptr;
}
if(m_pfCurrentValues[0]<m_fOuterMajorTickBorderMin)
{
if( !approxEqual(m_pfCurrentValues[0],m_fOuterMajorTickBorderMin) )
return nullptr;
}
//return always the value after scaling
if(!m_rIncrement.PostEquidistant && m_xInverseScaling.is() )
m_pfCurrentValues[0] = m_rScale.Scaling->doScaling( m_pfCurrentValues[0] );
return &m_pfCurrentValues[0];
}
double* EquidistantTickFactory::getMinorTick( sal_Int32 nTick, sal_Int32 nDepth
, double fStartParentTick, double fNextParentTick ) const
{
//check validity of arguments
{
//OSL_ENSURE( fStartParentTick < fNextParentTick, "fStartParentTick >= fNextParentTick");
if(fStartParentTick >= fNextParentTick)
return nullptr;
if(nDepth>static_cast<sal_Int32>(m_rIncrement.SubIncrements.size()) || nDepth<=0)
return nullptr;
//subticks are only calculated if they are laying between parent ticks:
if(nTick<=0)
return nullptr;
if(nTick>=m_rIncrement.SubIncrements[nDepth-1].IntervalCount)
return nullptr;
}
bool bPostEquidistant = m_rIncrement.SubIncrements[nDepth-1].PostEquidistant;
double fAdaptedStartParent = fStartParentTick;
double fAdaptedNextParent = fNextParentTick;
if( !bPostEquidistant && m_xInverseScaling.is() )
{
fAdaptedStartParent = m_xInverseScaling->doScaling(fStartParentTick);
fAdaptedNextParent = m_xInverseScaling->doScaling(fNextParentTick);
}
double fDistance = (fAdaptedNextParent - fAdaptedStartParent)/m_rIncrement.SubIncrements[nDepth-1].IntervalCount;
m_pfCurrentValues[nDepth] = fAdaptedStartParent + nTick*fDistance;
//return always the value after scaling
if(!bPostEquidistant && m_xInverseScaling.is() )
m_pfCurrentValues[nDepth] = m_rScale.Scaling->doScaling( m_pfCurrentValues[nDepth] );
if( !isWithinOuterBorder( m_pfCurrentValues[nDepth] ) )
return nullptr;
return &m_pfCurrentValues[nDepth];
}
bool EquidistantTickFactory::isWithinOuterBorder( double fScaledValue ) const
{
if(fScaledValue>m_fOuterMajorTickBorderMax_Scaled)
return false;
if(fScaledValue<m_fOuterMajorTickBorderMin_Scaled)
return false;
return true;
}
bool EquidistantTickFactory::isVisible( double fScaledValue ) const
{
if(fScaledValue>m_fScaledVisibleMax)
{
if( !approxEqual(fScaledValue,m_fScaledVisibleMax) )
return false;
}
if(fScaledValue<m_fScaledVisibleMin)
{
if( !approxEqual(fScaledValue,m_fScaledVisibleMin) )
return false;
}
return true;
}
void EquidistantTickFactory::getAllTicks( TickInfoArraysType& rAllTickInfos ) const
{
//create point sequences for each tick depth
const sal_Int32 nDepthCount = getTickDepth();
const sal_Int32 nMaxMajorTickCount = getMaxTickCount(0);
if (nDepthCount <= 0 || nMaxMajorTickCount <= 0)
return;
uno::Sequence< uno::Sequence< double > > aAllTicks(nDepthCount);
auto pAllTicks = aAllTicks.getArray();
pAllTicks[0].realloc(nMaxMajorTickCount);
auto pAllTicks0 = pAllTicks[0].getArray();
sal_Int32 nRealMajorTickCount = 0;
for( sal_Int32 nMajorTick=0; nMajorTick<nMaxMajorTickCount; nMajorTick++ )
{
double* pValue = getMajorTick( nMajorTick );
if(!pValue)
continue;
pAllTicks0[nRealMajorTickCount] = *pValue;
nRealMajorTickCount++;
}
if(!nRealMajorTickCount)
return;
pAllTicks[0].realloc(nRealMajorTickCount);
addSubTicks(1, aAllTicks);
//so far we have added all ticks between the outer major tick marks
//this was necessary to create sub ticks correctly
//now we reduce all ticks to the visible ones that lie between the real borders
sal_Int32 nDepth = 0;
sal_Int32 nTick = 0;
for( nDepth = 0; nDepth < nDepthCount; nDepth++)
{
sal_Int32 nInvisibleAtLowerBorder = 0;
sal_Int32 nInvisibleAtUpperBorder = 0;
//we need only to check all ticks within the first major interval at each border
sal_Int32 nCheckCount = 1;
for(sal_Int32 nN=0; nN<nDepth; nN++)
{
if( m_rIncrement.SubIncrements[nN].IntervalCount>1 )
nCheckCount *= m_rIncrement.SubIncrements[nN].IntervalCount;
}
uno::Sequence< double >& rTicks = pAllTicks[nDepth];
sal_Int32 nCount = rTicks.getLength();
//check lower border
for( nTick=0; nTick<nCheckCount && nTick<nCount; nTick++)
{
if( !isVisible( rTicks[nTick] ) )
nInvisibleAtLowerBorder++;
}
//check upper border
for( nTick=nCount-1; nTick>nCount-1-nCheckCount && nTick>=0; nTick--)
{
if( !isVisible( rTicks[nTick] ) )
nInvisibleAtUpperBorder++;
}
//resize sequence
if( !nInvisibleAtLowerBorder && !nInvisibleAtUpperBorder)
continue;
if( !nInvisibleAtLowerBorder )
rTicks.realloc(nCount-nInvisibleAtUpperBorder);
else
{
sal_Int32 nNewCount = nCount-nInvisibleAtUpperBorder-nInvisibleAtLowerBorder;
if(nNewCount<0)
nNewCount=0;
uno::Sequence< double > aOldTicks(rTicks);
rTicks.realloc(nNewCount);
auto pTicks = rTicks.getArray();
for(nTick = 0; nTick<nNewCount; nTick++)
pTicks[nTick] = aOldTicks[nInvisibleAtLowerBorder+nTick];
}
}
//fill return value
rAllTickInfos.resize(aAllTicks.getLength());
for( nDepth=0 ;nDepth<aAllTicks.getLength(); nDepth++ )
{
sal_Int32 nCount = aAllTicks[nDepth].getLength();
TickInfoArrayType& rTickInfoVector = rAllTickInfos[nDepth];
rTickInfoVector.clear();
rTickInfoVector.reserve( nCount );
for(sal_Int32 nN = 0; nN<nCount; nN++)
{
TickInfo aTickInfo(m_xInverseScaling);
aTickInfo.fScaledTickValue = aAllTicks[nDepth][nN];
rTickInfoVector.push_back(aTickInfo);
}
}
}
void EquidistantTickFactory::getAllTicksShifted( TickInfoArraysType& rAllTickInfos ) const
{
ExplicitIncrementData aShiftedIncrement( m_rIncrement );
aShiftedIncrement.BaseValue = m_rIncrement.BaseValue-m_rIncrement.Distance/2.0;
EquidistantTickFactory( m_rScale, aShiftedIncrement ).getAllTicks(rAllTickInfos);
}
EquidistantTickIter::EquidistantTickIter( const uno::Sequence< uno::Sequence< double > >& rTicks
, const ExplicitIncrementData& rIncrement
, sal_Int32 nMaxDepth )
: m_pSimpleTicks(&rTicks)
, m_pInfoTicks(nullptr)
, m_rIncrement(rIncrement)
, m_nMaxDepth(0)
, m_nTickCount(0)
, m_nCurrentDepth(-1), m_nCurrentPos(-1), m_fCurrentValue( 0.0 )
{
initIter( nMaxDepth );
}
EquidistantTickIter::EquidistantTickIter( TickInfoArraysType& rTicks
, const ExplicitIncrementData& rIncrement
, sal_Int32 nMaxDepth )
: m_pSimpleTicks(nullptr)
, m_pInfoTicks(&rTicks)
, m_rIncrement(rIncrement)
, m_nMaxDepth(0)
, m_nTickCount(0)
, m_nCurrentDepth(-1), m_nCurrentPos(-1), m_fCurrentValue( 0.0 )
{
initIter( nMaxDepth );
}
void EquidistantTickIter::initIter( sal_Int32 nMaxDepth )
{
m_nMaxDepth = nMaxDepth;
if(nMaxDepth<0 || m_nMaxDepth>getMaxDepth())
m_nMaxDepth=getMaxDepth();
sal_Int32 nDepth = 0;
for( nDepth = 0; nDepth<=m_nMaxDepth ;nDepth++ )
m_nTickCount += getTickCount(nDepth);
if(!m_nTickCount)
return;
m_pnPositions.reset( new sal_Int32[m_nMaxDepth+1] );
m_pnPreParentCount.reset( new sal_Int32[m_nMaxDepth+1] );
m_pbIntervalFinished.reset( new bool[m_nMaxDepth+1] );
m_pnPreParentCount[0] = 0;
m_pbIntervalFinished[0] = false;
double fParentValue = getTickValue(0,0);
for( nDepth = 1; nDepth<=m_nMaxDepth ;nDepth++ )
{
m_pbIntervalFinished[nDepth] = false;
sal_Int32 nPreParentCount = 0;
sal_Int32 nCount = getTickCount(nDepth);
for(sal_Int32 nN = 0; nN<nCount; nN++)
{
if(getTickValue(nDepth,nN) < fParentValue)
nPreParentCount++;
else
break;
}
m_pnPreParentCount[nDepth] = nPreParentCount;
if(nCount)
{
double fNextParentValue = getTickValue(nDepth,0);
if( fNextParentValue < fParentValue )
fParentValue = fNextParentValue;
}
}
}
EquidistantTickIter::~EquidistantTickIter()
{
}
sal_Int32 EquidistantTickIter::getStartDepth() const
{
//find the depth of the first visible tickmark:
//it is the depth of the smallest value
sal_Int32 nReturnDepth=0;
double fMinValue = DBL_MAX;
for(sal_Int32 nDepth = 0; nDepth<=m_nMaxDepth ;nDepth++ )
{
sal_Int32 nCount = getTickCount(nDepth);
if( !nCount )
continue;
double fThisValue = getTickValue(nDepth,0);
if(fThisValue<fMinValue)
{
nReturnDepth = nDepth;
fMinValue = fThisValue;
}
}
return nReturnDepth;
}
double* EquidistantTickIter::firstValue()
{
if( gotoFirst() )
{
m_fCurrentValue = getTickValue(m_nCurrentDepth, m_pnPositions[m_nCurrentDepth]);
return &m_fCurrentValue;
}
return nullptr;
}
TickInfo* EquidistantTickIter::firstInfo()
{
if( m_pInfoTicks && gotoFirst() )
return &(*m_pInfoTicks)[m_nCurrentDepth][m_pnPositions[m_nCurrentDepth]];
return nullptr;
}
sal_Int32 EquidistantTickIter::getIntervalCount( sal_Int32 nDepth )
{
if(nDepth>static_cast<sal_Int32>(m_rIncrement.SubIncrements.size()) || nDepth<0)
return 0;
if(!nDepth)
return m_nTickCount;
return m_rIncrement.SubIncrements[nDepth-1].IntervalCount;
}
bool EquidistantTickIter::isAtLastPartTick()
{
if(!m_nCurrentDepth)
return false;
sal_Int32 nIntervalCount = getIntervalCount( m_nCurrentDepth );
if(!nIntervalCount || nIntervalCount == 1)
return true;
if( m_pbIntervalFinished[m_nCurrentDepth] )
return false;
sal_Int32 nPos = m_pnPositions[m_nCurrentDepth]+1;
if(m_pnPreParentCount[m_nCurrentDepth])
nPos += nIntervalCount-1 - m_pnPreParentCount[m_nCurrentDepth];
bool bRet = nPos && nPos % (nIntervalCount-1) == 0;
if(!nPos && !m_pnPreParentCount[m_nCurrentDepth]
&& m_pnPositions[m_nCurrentDepth-1]==-1 )
bRet = true;
return bRet;
}
bool EquidistantTickIter::gotoFirst()
{
if( m_nMaxDepth<0 )
return false;
if( !m_nTickCount )
return false;
for(sal_Int32 nDepth = 0; nDepth<=m_nMaxDepth ;nDepth++ )
m_pnPositions[nDepth] = -1;
m_nCurrentPos = 0;
m_nCurrentDepth = getStartDepth();
m_pnPositions[m_nCurrentDepth] = 0;
return true;
}
bool EquidistantTickIter::gotoNext()
{
if( m_nCurrentPos < 0 )
return false;
m_nCurrentPos++;
if( m_nCurrentPos >= m_nTickCount )
return false;
if( m_nCurrentDepth==m_nMaxDepth && isAtLastPartTick() )
{
do
{
m_pbIntervalFinished[m_nCurrentDepth] = true;
m_nCurrentDepth--;
}
while( m_nCurrentDepth && isAtLastPartTick() );
}
else if( m_nCurrentDepth<m_nMaxDepth )
{
do
{
m_nCurrentDepth++;
}
while( m_nCurrentDepth<m_nMaxDepth );
}
m_pbIntervalFinished[m_nCurrentDepth] = false;
m_pnPositions[m_nCurrentDepth] = m_pnPositions[m_nCurrentDepth]+1;
return true;
}
double* EquidistantTickIter::nextValue()
{
if( gotoNext() )
{
m_fCurrentValue = getTickValue(m_nCurrentDepth, m_pnPositions[m_nCurrentDepth]);
return &m_fCurrentValue;
}
return nullptr;
}
TickInfo* EquidistantTickIter::nextInfo()
{
if( m_pInfoTicks && gotoNext() &&
static_cast< sal_Int32 >(
(*m_pInfoTicks)[m_nCurrentDepth].size()) > m_pnPositions[m_nCurrentDepth] )
{
return &(*m_pInfoTicks)[m_nCurrentDepth][m_pnPositions[m_nCurrentDepth]];
}
return nullptr;
}
} //namespace chart
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */