b3729421ae
Change-Id: I3d515fabc272e5c14f2e2779da1c43f92514f290
960 lines
33 KiB
C++
960 lines
33 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/*
|
|
* This file is part of the LibreOffice project.
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
* Copyright (C) 2012 Tino Kluge <tino.kluge@hrz.tu-chemnitz.de>
|
|
*
|
|
*/
|
|
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cmath>
|
|
#include <cassert>
|
|
#include <algorithm>
|
|
#include <rtl/math.hxx>
|
|
#include "black_scholes.hxx"
|
|
|
|
// options prices and greeks in the Black-Scholes model
|
|
// also known as TV (theoretical value)
|
|
//
|
|
// the code is structured as follows:
|
|
//
|
|
// (1) basic assets
|
|
// - cash-or-nothing option: bincash()
|
|
// - asset-or-nothing option: binasset()
|
|
//
|
|
// (2) derived basic assets, can all be priced based on (1)
|
|
// - vanilla put/call: putcall() = +/- ( binasset() - K*bincash() )
|
|
// - truncated put/call (barriers active at maturity only)
|
|
//
|
|
// (3) write a wrapper function to include all vanilla pricers
|
|
// - this is so we don't duplicate code when pricing barriers
|
|
// as this is derived from vanillas
|
|
//
|
|
// (4) single barrier options (knock-out), priced based on truncated vanillas
|
|
// - it follows from the reflection principle that the price W(S) of a
|
|
// single barrier option is given by
|
|
// W(S) = V(S) - (B/S)^a V(B^2/S), a = 2(rd-rf)/vol^2 - 1
|
|
// where V(S) is the price of the corresponding truncated vanilla
|
|
// option
|
|
// - to reduce code duplication and in anticipation of double barrier
|
|
// options we write the following function
|
|
// barrier_term(S,c) = V(c*S) - (B/S)^a V(c*B^2/S)
|
|
//
|
|
// (5) double barrier options (knock-out)
|
|
// - value is an infinite sum over option prices of the corresponding
|
|
// truncated vanillas (truncated at both barriers):
|
|
//
|
|
// W(S)=sum (B2/B1)^(i*a) (V(S(B2/B1)^(2i)) - (B1/S)^a V(B1^2/S (B2/B1)^(2i))
|
|
//
|
|
// (6) write routines for put/call barriers and touch options which
|
|
// mainly call the general double barrier pricer
|
|
// the main routines are touch() and barrier()
|
|
// both can price in/out barriers, double/single barriers as well as
|
|
// vanillas
|
|
//
|
|
//
|
|
// the framework allows any barriers to be priced as long as we define
|
|
// the value/greek functions for the corresponding truncated vanilla
|
|
// and wrap them into internal::vanilla() and internal::vanilla_trunc()
|
|
//
|
|
// disadvantage of that approach is that due to the rules of
|
|
// differentiations the formulas for greeks become long and possible
|
|
// simplifications in the formulas won't be made
|
|
//
|
|
// other code inefficiency due to multiplication with pm (+/- 1)
|
|
// cvtsi2sd: int-->double, 6/3 cycles
|
|
// mulsd: double-double multiplication, 5/1 cycles
|
|
// with -O3, however, it compiles 2 versions with pm=1, and pm=-1
|
|
// which are efficient
|
|
// note this is tiny anyway as compared to exp/log (100 cycles),
|
|
// pow (200 cycles), erf (70 cycles)
|
|
//
|
|
// this code is not tested for numerical instability, ie overruns,
|
|
// underruns, accuracy, etc
|
|
|
|
|
|
namespace sca {
|
|
namespace pricing {
|
|
|
|
namespace bs {
|
|
|
|
|
|
// helper functions
|
|
// ----------------
|
|
inline double sqr(double x) {
|
|
return x*x;
|
|
}
|
|
// normal density (see also ScInterpreter::phi)
|
|
inline double dnorm(double x) {
|
|
//return (1.0/sqrt(2.0*M_PI))*exp(-0.5*x*x); // windows may not have M_PI
|
|
return 0.39894228040143268*exp(-0.5*x*x);
|
|
}
|
|
// cumulative normal distribution (see also ScInterpreter::integralPhi)
|
|
inline double pnorm(double x) {
|
|
//return 0.5*(erf(sqrt(0.5)*x)+1.0); // windows may not have erf
|
|
return 0.5 * ::rtl::math::erfc(-x * 0.7071067811865475);
|
|
}
|
|
|
|
|
|
|
|
// binary option cash (domestic)
|
|
// call - pays 1 if S_T is above strike K
|
|
// put - pays 1 if S_T is below strike K
|
|
double bincash(double S, double vol, double rd, double rf,
|
|
double tau, double K,
|
|
types::PutCall pc, types::Greeks greeks) {
|
|
assert(tau>=0.0);
|
|
assert(S>0.0);
|
|
assert(vol>0.0);
|
|
assert(K>=0.0);
|
|
|
|
double val=0.0;
|
|
|
|
if(tau<=0.0) {
|
|
// special case tau=0 (expiry)
|
|
switch(greeks) {
|
|
case types::Value:
|
|
if( (pc==types::Call && S>=K) || (pc==types::Put && S<=K) ) {
|
|
val = 1.0;
|
|
} else {
|
|
val = 0.0;
|
|
}
|
|
break;
|
|
default:
|
|
val = 0.0;
|
|
}
|
|
} else if(K==0.0) {
|
|
// special case with zero strike
|
|
if(pc==types::Put) {
|
|
// up-and-out (put) with K=0
|
|
val=0.0;
|
|
} else {
|
|
// down-and-out (call) with K=0 (zero coupon bond)
|
|
switch(greeks) {
|
|
case types::Value:
|
|
val = 1.0;
|
|
break;
|
|
case types::Theta:
|
|
val = rd;
|
|
break;
|
|
case types::Rho_d:
|
|
val = -tau;
|
|
break;
|
|
default:
|
|
val = 0.0;
|
|
}
|
|
}
|
|
} else {
|
|
// standard case with K>0, tau>0
|
|
double d1 = ( log(S/K)+(rd-rf+0.5*vol*vol)*tau ) / (vol*sqrt(tau));
|
|
double d2 = d1 - vol*sqrt(tau);
|
|
int pm = (pc==types::Call) ? 1 : -1;
|
|
|
|
switch(greeks) {
|
|
case types::Value:
|
|
val = pnorm(pm*d2);
|
|
break;
|
|
case types::Delta:
|
|
val = pm*dnorm(d2)/(S*vol*sqrt(tau));
|
|
break;
|
|
case types::Gamma:
|
|
val = -pm*dnorm(d2)*d1/(sqr(S*vol)*tau);
|
|
break;
|
|
case types::Theta:
|
|
val = rd*pnorm(pm*d2)
|
|
+ pm*dnorm(d2)*(log(S/K)/(vol*sqrt(tau))-0.5*d2)/tau;
|
|
break;
|
|
case types::Vega:
|
|
val = -pm*dnorm(d2)*d1/vol;
|
|
break;
|
|
case types::Volga:
|
|
val = pm*dnorm(d2)/(vol*vol)*(-d1*d1*d2+d1+d2);
|
|
break;
|
|
case types::Vanna:
|
|
val = pm*dnorm(d2)/(S*vol*vol*sqrt(tau))*(d1*d2-1.0);
|
|
break;
|
|
case types::Rho_d:
|
|
val = -tau*pnorm(pm*d2) + pm*dnorm(d2)*sqrt(tau)/vol;
|
|
break;
|
|
case types::Rho_f:
|
|
val = -pm*dnorm(d2)*sqrt(tau)/vol;
|
|
break;
|
|
default:
|
|
printf("bincash: greek %d not implemented\n", greeks );
|
|
abort();
|
|
}
|
|
}
|
|
return exp(-rd*tau)*val;
|
|
}
|
|
|
|
|
|
|
|
// binary option asset (foreign)
|
|
// call - pays S_T if S_T is above strike K
|
|
// put - pays S_T if S_T is below strike K
|
|
double binasset(double S, double vol, double rd, double rf,
|
|
double tau, double K,
|
|
types::PutCall pc, types::Greeks greeks) {
|
|
assert(tau>=0.0);
|
|
assert(S>0.0);
|
|
assert(vol>0.0);
|
|
assert(K>=0.0);
|
|
|
|
double val=0.0;
|
|
if(tau<=0.0) {
|
|
// special case tau=0 (expiry)
|
|
switch(greeks) {
|
|
case types::Value:
|
|
if( (pc==types::Call && S>=K) || (pc==types::Put && S<=K) ) {
|
|
val = S;
|
|
} else {
|
|
val = 0.0;
|
|
}
|
|
break;
|
|
case types::Delta:
|
|
if( (pc==types::Call && S>=K) || (pc==types::Put && S<=K) ) {
|
|
val = 1.0;
|
|
} else {
|
|
val = 0.0;
|
|
}
|
|
break;
|
|
default:
|
|
val = 0.0;
|
|
}
|
|
} else if(K==0.0) {
|
|
// special case with zero strike (forward with zero strike)
|
|
if(pc==types::Put) {
|
|
// up-and-out (put) with K=0
|
|
val = 0.0;
|
|
} else {
|
|
// down-and-out (call) with K=0 (type of forward)
|
|
switch(greeks) {
|
|
case types::Value:
|
|
val = S;
|
|
break;
|
|
case types::Delta:
|
|
val = 1.0;
|
|
break;
|
|
case types::Theta:
|
|
val = rf*S;
|
|
break;
|
|
case types::Rho_f:
|
|
val = -tau*S;
|
|
break;
|
|
default:
|
|
val = 0.0;
|
|
}
|
|
}
|
|
} else {
|
|
// normal case
|
|
double d1 = ( log(S/K)+(rd-rf+0.5*vol*vol)*tau ) / (vol*sqrt(tau));
|
|
double d2 = d1 - vol*sqrt(tau);
|
|
int pm = (pc==types::Call) ? 1 : -1;
|
|
|
|
switch(greeks) {
|
|
case types::Value:
|
|
val = S*pnorm(pm*d1);
|
|
break;
|
|
case types::Delta:
|
|
val = pnorm(pm*d1) + pm*dnorm(d1)/(vol*sqrt(tau));
|
|
break;
|
|
case types::Gamma:
|
|
val = -pm*dnorm(d1)*d2/(S*sqr(vol)*tau);
|
|
break;
|
|
case types::Theta:
|
|
val = rf*S*pnorm(pm*d1)
|
|
+ pm*S*dnorm(d1)*(log(S/K)/(vol*sqrt(tau))-0.5*d1)/tau;
|
|
break;
|
|
case types::Vega:
|
|
val = -pm*S*dnorm(d1)*d2/vol;
|
|
break;
|
|
case types::Volga:
|
|
val = pm*S*dnorm(d1)/(vol*vol)*(-d1*d2*d2+d1+d2);
|
|
break;
|
|
case types::Vanna:
|
|
val = pm*dnorm(d1)/(vol*vol*sqrt(tau))*(d2*d2-1.0);
|
|
break;
|
|
case types::Rho_d:
|
|
val = pm*S*dnorm(d1)*sqrt(tau)/vol;
|
|
break;
|
|
case types::Rho_f:
|
|
val = -tau*S*pnorm(pm*d1) - pm*S*dnorm(d1)*sqrt(tau)/vol;
|
|
break;
|
|
default:
|
|
printf("binasset: greek %d not implemented\n", greeks );
|
|
abort();
|
|
}
|
|
}
|
|
return exp(-rf*tau)*val;
|
|
}
|
|
|
|
// just for convenience we can combine bincash and binasset into
|
|
// one function binary
|
|
// using bincash() if fd==types::Domestic
|
|
// using binasset() if fd==types::Foreign
|
|
double binary(double S, double vol, double rd, double rf,
|
|
double tau, double K,
|
|
types::PutCall pc, types::ForDom fd,
|
|
types::Greeks greek) {
|
|
double val=0.0;
|
|
switch(fd) {
|
|
case types::Domestic:
|
|
val = bincash(S,vol,rd,rf,tau,K,pc,greek);
|
|
break;
|
|
case types::Foreign:
|
|
val = binasset(S,vol,rd,rf,tau,K,pc,greek);
|
|
break;
|
|
default:
|
|
// never get here
|
|
assert(false);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
// further wrapper to combine single/double barrier binary options
|
|
// into one function
|
|
// B1<=0 - it is assumed lower barrier not set
|
|
// B2<=0 - it is assumed upper barrier not set
|
|
double binary(double S, double vol, double rd, double rf,
|
|
double tau, double B1, double B2,
|
|
types::ForDom fd, types::Greeks greek) {
|
|
assert(tau>=0.0);
|
|
assert(S>0.0);
|
|
assert(vol>0.0);
|
|
|
|
double val=0.0;
|
|
|
|
if(B1<=0.0 && B2<=0.0) {
|
|
// no barriers set, payoff 1.0 (domestic) or S_T (foreign)
|
|
val = binary(S,vol,rd,rf,tau,0.0,types::Call,fd,greek);
|
|
} else if(B1<=0.0 && B2>0.0) {
|
|
// upper barrier (put)
|
|
val = binary(S,vol,rd,rf,tau,B2,types::Put,fd,greek);
|
|
} else if(B1>0.0 && B2<=0.0) {
|
|
// lower barrier (call)
|
|
val = binary(S,vol,rd,rf,tau,B1,types::Call,fd,greek);
|
|
} else if(B1>0.0 && B2>0.0) {
|
|
// double barrier
|
|
if(B2<=B1) {
|
|
val = 0.0;
|
|
} else {
|
|
val = binary(S,vol,rd,rf,tau,B2,types::Put,fd,greek)
|
|
- binary(S,vol,rd,rf,tau,B1,types::Put,fd,greek);
|
|
}
|
|
} else {
|
|
// never get here
|
|
assert(false);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
|
|
|
|
// vanilla put/call option
|
|
// call pays (S_T-K)^+
|
|
// put pays (K-S_T)^+
|
|
// this is the same as: +/- (binasset - K*bincash)
|
|
double putcall(double S, double vol, double rd, double rf,
|
|
double tau, double K,
|
|
types::PutCall putcall, types::Greeks greeks) {
|
|
|
|
assert(tau>=0.0);
|
|
assert(S>0.0);
|
|
assert(vol>0.0);
|
|
assert(K>=0.0);
|
|
|
|
double val = 0.0;
|
|
int pm = (putcall==types::Call) ? 1 : -1;
|
|
|
|
if(K==0 || tau==0.0) {
|
|
// special cases, simply refer to binasset() and bincash()
|
|
val = pm * ( binasset(S,vol,rd,rf,tau,K,putcall,greeks)
|
|
- K*bincash(S,vol,rd,rf,tau,K,putcall,greeks) );
|
|
} else {
|
|
// general case
|
|
// we could just use pm*(binasset-K*bincash), however
|
|
// since the formula for delta and gamma simplify we write them
|
|
// down here
|
|
double d1 = ( log(S/K)+(rd-rf+0.5*vol*vol)*tau ) / (vol*sqrt(tau));
|
|
double d2 = d1 - vol*sqrt(tau);
|
|
|
|
switch(greeks) {
|
|
case types::Value:
|
|
val = pm * ( exp(-rf*tau)*S*pnorm(pm*d1)-exp(-rd*tau)*K*pnorm(pm*d2) );
|
|
break;
|
|
case types::Delta:
|
|
val = pm*exp(-rf*tau)*pnorm(pm*d1);
|
|
break;
|
|
case types::Gamma:
|
|
val = exp(-rf*tau)*dnorm(d1)/(S*vol*sqrt(tau));
|
|
break;
|
|
default:
|
|
// too lazy for the other greeks, so simply refer to binasset/bincash
|
|
val = pm * ( binasset(S,vol,rd,rf,tau,K,putcall,greeks)
|
|
- K*bincash(S,vol,rd,rf,tau,K,putcall,greeks) );
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
// truncated put/call option, single barrier
|
|
// need to specify whether it's down-and-out or up-and-out
|
|
// regular (keeps monotonicity): down-and-out for call, up-and-out for put
|
|
// reverse (destroys monoton): up-and-out for call, down-and-out for put
|
|
// call pays (S_T-K)^+
|
|
// put pays (K-S_T)^+
|
|
double putcalltrunc(double S, double vol, double rd, double rf,
|
|
double tau, double K, double B,
|
|
types::PutCall pc, types::KOType kotype,
|
|
types::Greeks greeks) {
|
|
|
|
assert(tau>=0.0);
|
|
assert(S>0.0);
|
|
assert(vol>0.0);
|
|
assert(K>=0.0);
|
|
assert(B>=0.0);
|
|
|
|
int pm = (pc==types::Call) ? 1 : -1;
|
|
double val = 0.0;
|
|
|
|
switch(kotype) {
|
|
case types::Regular:
|
|
if( (pc==types::Call && B<=K) || (pc==types::Put && B>=K) ) {
|
|
// option degenerates to standard plain vanilla call/put
|
|
val = putcall(S,vol,rd,rf,tau,K,pc,greeks);
|
|
} else {
|
|
// normal case with truncation
|
|
val = pm * ( binasset(S,vol,rd,rf,tau,B,pc,greeks)
|
|
- K*bincash(S,vol,rd,rf,tau,B,pc,greeks) );
|
|
}
|
|
break;
|
|
case types::Reverse:
|
|
if( (pc==types::Call && B<=K) || (pc==types::Put && B>=K) ) {
|
|
// option degenerates to zero payoff
|
|
val = 0.0;
|
|
} else {
|
|
// normal case with truncation
|
|
val = binasset(S,vol,rd,rf,tau,K,types::Call,greeks)
|
|
- binasset(S,vol,rd,rf,tau,B,types::Call,greeks)
|
|
- K * ( bincash(S,vol,rd,rf,tau,K,types::Call,greeks)
|
|
- bincash(S,vol,rd,rf,tau,B,types::Call,greeks) );
|
|
}
|
|
break;
|
|
default:
|
|
assert(false);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
// wrapper function for put/call option which combines
|
|
// double/single/no truncation barrier
|
|
// B1<=0 - assume no lower barrier
|
|
// B2<=0 - assume no upper barrier
|
|
double putcalltrunc(double S, double vol, double rd, double rf,
|
|
double tau, double K, double B1, double B2,
|
|
types::PutCall pc, types::Greeks greek) {
|
|
|
|
assert(tau>=0.0);
|
|
assert(S>0.0);
|
|
assert(vol>0.0);
|
|
assert(K>=0.0);
|
|
|
|
double val=0.0;
|
|
|
|
if(B1<=0.0 && B2<=0.0) {
|
|
// no barriers set, plain vanilla
|
|
val = putcall(S,vol,rd,rf,tau,K,pc,greek);
|
|
} else if(B1<=0.0 && B2>0.0) {
|
|
// upper barrier: reverse barrier for call, regular barrier for put
|
|
if(pc==types::Call) {
|
|
val = putcalltrunc(S,vol,rd,rf,tau,K,B2,pc,types::Reverse,greek);
|
|
} else {
|
|
val = putcalltrunc(S,vol,rd,rf,tau,K,B2,pc,types::Regular,greek);
|
|
}
|
|
} else if(B1>0.0 && B2<=0.0) {
|
|
// lower barrier: regular barrier for call, reverse barrier for put
|
|
if(pc==types::Call) {
|
|
val = putcalltrunc(S,vol,rd,rf,tau,K,B1,pc,types::Regular,greek);
|
|
} else {
|
|
val = putcalltrunc(S,vol,rd,rf,tau,K,B1,pc,types::Reverse,greek);
|
|
}
|
|
} else if(B1>0.0 && B2>0.0) {
|
|
// double barrier
|
|
if(B2<=B1) {
|
|
val = 0.0;
|
|
} else {
|
|
int pm = (pc==types::Call) ? 1 : -1;
|
|
val = pm * (
|
|
putcalltrunc(S,vol,rd,rf,tau,K,B1,pc,types::Regular,greek)
|
|
- putcalltrunc(S,vol,rd,rf,tau,K,B2,pc,types::Regular,greek)
|
|
);
|
|
}
|
|
} else {
|
|
// never get here
|
|
assert(false);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
// wrapper function for all non-path dependent options
|
|
// this is only an internal function, used to avoid code duplication when
|
|
// going to path-dependent barrier options,
|
|
// K<0 - assume binary option
|
|
// K>=0 - assume put/call option
|
|
double vanilla(double S, double vol, double rd, double rf,
|
|
double tau, double K, double B1, double B2,
|
|
types::PutCall pc, types::ForDom fd,
|
|
types::Greeks greek) {
|
|
double val = 0.0;
|
|
if(K<0.0) {
|
|
// binary option if K<0
|
|
val = binary(S,vol,rd,rf,tau,B1,B2,fd,greek);
|
|
} else {
|
|
val = putcall(S,vol,rd,rf,tau,K,pc,greek);
|
|
}
|
|
return val;
|
|
}
|
|
double vanilla_trunc(double S, double vol, double rd, double rf,
|
|
double tau, double K, double B1, double B2,
|
|
types::PutCall pc, types::ForDom fd,
|
|
types::Greeks greek) {
|
|
double val = 0.0;
|
|
if(K<0.0) {
|
|
// binary option if K<0
|
|
// truncated is actually the same as the vanilla binary
|
|
val = binary(S,vol,rd,rf,tau,B1,B2,fd,greek);
|
|
} else {
|
|
val = putcalltrunc(S,vol,rd,rf,tau,K,B1,B2,pc,greek);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
} // namespace internal
|
|
|
|
|
|
// ---------------------------------------------------------------------
|
|
// path dependent options
|
|
// ---------------------------------------------------------------------
|
|
|
|
namespace internal {
|
|
|
|
// helper term for any type of options with continuously monitored barriers,
|
|
// internal, should not be called from outside
|
|
// calculates value and greeks based on
|
|
// V(S) = V1(sc*S) - (B/S)^a V1(sc*B^2/S)
|
|
// (a=2 mu/vol^2, mu drift in logspace, ie. mu=(rd-rf-1/2vol^2))
|
|
// with sc=1 and V1() being the price of the respective truncated
|
|
// vanilla option, V() would be the price of the respective barrier
|
|
// option if only one barrier is present
|
|
double barrier_term(double S, double vol, double rd, double rf,
|
|
double tau, double K, double B1, double B2, double sc,
|
|
types::PutCall pc, types::ForDom fd,
|
|
types::Greeks greek) {
|
|
|
|
assert(tau>=0.0);
|
|
assert(S>0.0);
|
|
assert(vol>0.0);
|
|
|
|
// V(S) = V1(sc*S) - (B/S)^a V1(sc*B^2/S)
|
|
double val = 0.0;
|
|
double B = (B1>0.0) ? B1 : B2;
|
|
double a = 2.0*(rd-rf)/(vol*vol)-1.0; // helper variable
|
|
double b = 4.0*(rd-rf)/(vol*vol*vol); // helper variable -da/dvol
|
|
double c = 12.0*(rd-rf)/(vol*vol*vol*vol); // helper -db/dvol
|
|
switch(greek) {
|
|
case types::Value:
|
|
val = vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
|
|
- pow(B/S,a)*
|
|
vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
|
|
break;
|
|
case types::Delta:
|
|
val = sc*vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
|
|
+ pow(B/S,a) * (
|
|
a/S*
|
|
vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value)
|
|
+ sqr(B/S)*sc*
|
|
vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
|
|
);
|
|
break;
|
|
case types::Gamma:
|
|
val = sc*sc*vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
|
|
- pow(B/S,a) * (
|
|
a*(a+1.0)/(S*S)*
|
|
vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value)
|
|
+ (2.0*a+2.0)*B*B/(S*S*S)*sc*
|
|
vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Delta)
|
|
+ sqr(sqr(B/S))*sc*sc*
|
|
vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Gamma)
|
|
);
|
|
break;
|
|
case types::Theta:
|
|
val = vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
|
|
- pow(B/S,a)*
|
|
vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
|
|
break;
|
|
case types::Vega:
|
|
val = vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
|
|
- pow(B/S,a) * (
|
|
- b*log(B/S)*
|
|
vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value)
|
|
+ 1.0*
|
|
vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
|
|
);
|
|
break;
|
|
case types::Volga:
|
|
val = vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
|
|
- pow(B/S,a) * (
|
|
log(B/S)*(b*b*log(B/S)+c)*
|
|
vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value)
|
|
- 2.0*b*log(B/S)*
|
|
vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Vega)
|
|
+ 1.0*
|
|
vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Volga)
|
|
);
|
|
break;
|
|
case types::Vanna:
|
|
val = sc*vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
|
|
- pow(B/S,a) * (
|
|
b/S*(log(B/S)*a+1.0)*
|
|
vanilla_trunc(B*B/S*sc,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value)
|
|
+ b*log(B/S)*sqr(B/S)*sc*
|
|
vanilla_trunc(B*B/S*sc,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Delta)
|
|
- a/S*
|
|
vanilla_trunc(B*B/S*sc,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Vega)
|
|
- sqr(B/S)*sc*
|
|
vanilla_trunc(B*B/S*sc,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Vanna)
|
|
);
|
|
break;
|
|
case types::Rho_d:
|
|
val = vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
|
|
- pow(B/S,a) * (
|
|
2.0*log(B/S)/(vol*vol)*
|
|
vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value)
|
|
+ 1.0*
|
|
vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
|
|
);
|
|
break;
|
|
case types::Rho_f:
|
|
val = vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
|
|
- pow(B/S,a) * (
|
|
- 2.0*log(B/S)/(vol*vol)*
|
|
vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value)
|
|
+ 1.0*
|
|
vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
|
|
);
|
|
break;
|
|
default:
|
|
printf("barrier_term: greek %d not implemented\n", greek );
|
|
abort();
|
|
}
|
|
return val;
|
|
}
|
|
|
|
// one term of the infinite sum for the valuation of double barriers
|
|
double barrier_double_term( double S, double vol, double rd, double rf,
|
|
double tau, double K, double B1, double B2,
|
|
double fac, double sc, int i,
|
|
types::PutCall pc, types::ForDom fd, types::Greeks greek) {
|
|
|
|
double val = 0.0;
|
|
double b = 4.0*i*(rd-rf)/(vol*vol*vol); // helper variable -da/dvol
|
|
double c = 12.0*i*(rd-rf)/(vol*vol*vol*vol); // helper -db/dvol
|
|
switch(greek) {
|
|
case types::Value:
|
|
val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek);
|
|
break;
|
|
case types::Delta:
|
|
val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek);
|
|
break;
|
|
case types::Gamma:
|
|
val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek);
|
|
break;
|
|
case types::Theta:
|
|
val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek);
|
|
break;
|
|
case types::Vega:
|
|
val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek)
|
|
- b*log(B2/B1)*fac *
|
|
barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Value);
|
|
break;
|
|
case types::Volga:
|
|
val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek)
|
|
- 2.0*b*log(B2/B1)*fac *
|
|
barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Vega)
|
|
+ log(B2/B1)*fac*(c+b*b*log(B2/B1)) *
|
|
barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Value);
|
|
break;
|
|
case types::Vanna:
|
|
val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek)
|
|
- b*log(B2/B1)*fac *
|
|
barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Delta);
|
|
break;
|
|
case types::Rho_d:
|
|
val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek)
|
|
+ 2.0*i/(vol*vol)*log(B2/B1)*fac *
|
|
barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Value);
|
|
break;
|
|
case types::Rho_f:
|
|
val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek)
|
|
- 2.0*i/(vol*vol)*log(B2/B1)*fac *
|
|
barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Value);
|
|
break;
|
|
default:
|
|
printf("barrier_double_term: greek %d not implemented\n", greek );
|
|
abort();
|
|
}
|
|
return val;
|
|
}
|
|
|
|
// general pricer for any type of options with continuously monitored barriers
|
|
// allows two, one or zero barriers, only knock-out style
|
|
// payoff profiles allowed based on vanilla_trunc()
|
|
double barrier_ko(double S, double vol, double rd, double rf,
|
|
double tau, double K, double B1, double B2,
|
|
types::PutCall pc, types::ForDom fd,
|
|
types::Greeks greek) {
|
|
|
|
assert(tau>=0.0);
|
|
assert(S>0.0);
|
|
assert(vol>0.0);
|
|
|
|
double val = 0.0;
|
|
|
|
if(B1<=0.0 && B2<=0.0) {
|
|
// no barriers --> vanilla case
|
|
val = vanilla(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
|
|
} else if(B1>0.0 && B2<=0.0) {
|
|
// lower barrier
|
|
if(S<=B1) {
|
|
val = 0.0; // knocked out
|
|
} else {
|
|
val = barrier_term(S,vol,rd,rf,tau,K,B1,B2,1.0,pc,fd,greek);
|
|
}
|
|
} else if(B1<=0.0 && B2>0.0) {
|
|
// upper barrier
|
|
if(S>=B2) {
|
|
val = 0.0; // knocked out
|
|
} else {
|
|
val = barrier_term(S,vol,rd,rf,tau,K,B1,B2,1.0,pc,fd,greek);
|
|
}
|
|
} else if(B1>0.0 && B2>0.0) {
|
|
// double barrier
|
|
if(S<=B1 || S>=B2) {
|
|
val = 0.0; // knocked out (always true if wrong input B1>B2)
|
|
} else {
|
|
// more complex calculation as we have to evaluate an infinite
|
|
// sum
|
|
// to reduce very costly pow() calls we define some variables
|
|
double a = 2.0*(rd-rf)/(vol*vol)-1.0; // 2 (mu-1/2vol^2)/sigma^2
|
|
double BB2=sqr(B2/B1);
|
|
double BBa=pow(B2/B1,a);
|
|
double BB2inv=1.0/BB2;
|
|
double BBainv=1.0/BBa;
|
|
double fac=1.0;
|
|
double facinv=1.0;
|
|
double sc=1.0;
|
|
double scinv=1.0;
|
|
|
|
// initial term i=0
|
|
val=barrier_double_term(S,vol,rd,rf,tau,K,B1,B2,fac,sc,0,pc,fd,greek);
|
|
// infinite loop, 10 should be plenty, normal would be 2
|
|
for(int i=1; i<10; i++) {
|
|
fac*=BBa;
|
|
facinv*=BBainv;
|
|
sc*=BB2;
|
|
scinv*=BB2inv;
|
|
double add =
|
|
barrier_double_term(S,vol,rd,rf,tau,K,B1,B2,fac,sc,i,pc,fd,greek) +
|
|
barrier_double_term(S,vol,rd,rf,tau,K,B1,B2,facinv,scinv,-i,pc,fd,greek);
|
|
val += add;
|
|
//printf("%i: val=%e (add=%e)\n",i,val,add);
|
|
if(fabs(add) <= 1e-12*fabs(val)) {
|
|
break;
|
|
}
|
|
}
|
|
// not knocked-out double barrier end
|
|
}
|
|
// double barrier end
|
|
} else {
|
|
// no such barrier combination exists
|
|
assert(false);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
// knock-in style barrier
|
|
double barrier_ki(double S, double vol, double rd, double rf,
|
|
double tau, double K, double B1, double B2,
|
|
types::PutCall pc, types::ForDom fd,
|
|
types::Greeks greek) {
|
|
return vanilla(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
|
|
-barrier_ko(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
|
|
}
|
|
|
|
// general barrier
|
|
double barrier(double S, double vol, double rd, double rf,
|
|
double tau, double K, double B1, double B2,
|
|
types::PutCall pc, types::ForDom fd,
|
|
types::BarrierKIO kio, types::BarrierActive bcont,
|
|
types::Greeks greek) {
|
|
|
|
double val = 0.0;
|
|
if( kio==types::KnockOut && bcont==types::Maturity ) {
|
|
// truncated vanilla option
|
|
val = vanilla_trunc(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
|
|
} else if ( kio==types::KnockOut && bcont==types::Continuous ) {
|
|
// standard knock-out barrier
|
|
val = barrier_ko(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
|
|
} else if ( kio==types::KnockIn && bcont==types::Maturity ) {
|
|
// inverse truncated vanilla
|
|
val = vanilla(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
|
|
- vanilla_trunc(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
|
|
} else if ( kio==types::KnockIn && bcont==types::Continuous ) {
|
|
// standard knock-in barrier
|
|
val = barrier_ki(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
|
|
} else {
|
|
// never get here
|
|
assert(false);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
} // namespace internal
|
|
|
|
|
|
|
|
|
|
// touch/no-touch options (cash/asset or nothing payoff profile)
|
|
double touch(double S, double vol, double rd, double rf,
|
|
double tau, double B1, double B2, types::ForDom fd,
|
|
types::BarrierKIO kio, types::BarrierActive bcont,
|
|
types::Greeks greek) {
|
|
|
|
double K=-1.0; // dummy
|
|
types::PutCall pc = types::Call; // dummy
|
|
double val = 0.0;
|
|
if( kio==types::KnockOut && bcont==types::Maturity ) {
|
|
// truncated vanilla option
|
|
val = internal::vanilla_trunc(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
|
|
} else if ( kio==types::KnockOut && bcont==types::Continuous ) {
|
|
// standard knock-out barrier
|
|
val = internal::barrier_ko(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
|
|
} else if ( kio==types::KnockIn && bcont==types::Maturity ) {
|
|
// inverse truncated vanilla
|
|
val = internal::vanilla(S,vol,rd,rf,tau,K,-1.0,-1.0,pc,fd,greek)
|
|
- internal::vanilla_trunc(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
|
|
} else if ( kio==types::KnockIn && bcont==types::Continuous ) {
|
|
// standard knock-in barrier
|
|
val = internal::vanilla(S,vol,rd,rf,tau,K,-1.0,-1.0,pc,fd,greek)
|
|
- internal::barrier_ko(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
|
|
} else {
|
|
// never get here
|
|
assert(false);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
// barrier option (put/call payoff profile)
|
|
double barrier(double S, double vol, double rd, double rf,
|
|
double tau, double K, double B1, double B2,
|
|
double rebate,
|
|
types::PutCall pc, types::BarrierKIO kio,
|
|
types::BarrierActive bcont,
|
|
types::Greeks greek) {
|
|
assert(tau>=0.0);
|
|
assert(S>0.0);
|
|
assert(vol>0.0);
|
|
assert(K>=0.0);
|
|
types::ForDom fd = types::Domestic;
|
|
double val=internal::barrier(S,vol,rd,rf,tau,K,B1,B2,pc,fd,kio,bcont,greek);
|
|
if(rebate!=0.0) {
|
|
// opposite of barrier knock-in/out type
|
|
types::BarrierKIO kio2 = (kio==types::KnockIn) ? types::KnockOut
|
|
: types::KnockIn;
|
|
val += rebate*touch(S,vol,rd,rf,tau,B1,B2,fd,kio2,bcont,greek);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
|
|
|
|
// probability of hitting a barrier
|
|
// this is almost the same as the price of a touch option (domestic)
|
|
// as it pays one if a barrier is hit; we only have to offset the
|
|
// discounting and we get the probability
|
|
double prob_hit(double S, double vol, double mu,
|
|
double tau, double B1, double B2) {
|
|
double rd=0.0;
|
|
double rf=-mu;
|
|
return 1.0 - touch(S,vol,rd,rf,tau,B1,B2,types::Domestic,types::KnockOut,
|
|
types::Continuous, types::Value);
|
|
}
|
|
|
|
// probability of being in-the-money, ie payoff is greater zero,
|
|
// assuming payoff(S_T) > 0 iff S_T in [B1, B2]
|
|
// this the same as the price of a cash or nothing option
|
|
// with no discounting
|
|
double prob_in_money(double S, double vol, double mu,
|
|
double tau, double B1, double B2) {
|
|
assert(S>0.0);
|
|
assert(vol>0.0);
|
|
assert(tau>=0.0);
|
|
double val = 0.0;
|
|
if( B1<B2 || B1<=0.0 || B2<=0.0 ) {
|
|
val = binary(S,vol,0.0,-mu,tau,B1,B2,types::Domestic,types::Value);
|
|
}
|
|
return val;
|
|
}
|
|
double prob_in_money(double S, double vol, double mu,
|
|
double tau, double K, double B1, double B2,
|
|
types::PutCall pc) {
|
|
assert(S>0.0);
|
|
assert(vol>0.0);
|
|
assert(tau>=0.0);
|
|
|
|
// if K<0 we assume a binary option is given
|
|
if(K<0.0) {
|
|
return prob_in_money(S,vol,mu,tau,B1,B2);
|
|
}
|
|
|
|
double val = 0.0;
|
|
double BM1, BM2; // range of in the money [BM1, BM2]
|
|
// non-sense parameters with no positive payoff
|
|
if( (B1>B2 && B1>0.0 && B2>0.0) ||
|
|
(K>=B2 && B2>0.0 && pc==types::Call) ||
|
|
(K<=B1 && pc==types::Put) ) {
|
|
val = 0.0;
|
|
// need to figure out between what barriers payoff is greater 0
|
|
} else if(pc==types::Call) {
|
|
BM1=std::max(B1, K);
|
|
BM2=B2;
|
|
val = prob_in_money(S,vol,mu,tau,BM1,BM2);
|
|
} else if (pc==types::Put) {
|
|
BM1=B1;
|
|
BM2= (B2>0.0) ? std::min(B2,K) : K;
|
|
val = prob_in_money(S,vol,mu,tau,BM1,BM2);
|
|
} else {
|
|
// don't get here
|
|
assert(false);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
|
|
|
|
} // namespace bs
|
|
|
|
} // namespace pricing
|
|
} // namespace sca
|
|
|
|
|
|
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|