2003-10-15 08:44:37 -05:00
|
|
|
/*************************************************************************
|
|
|
|
*
|
2005-09-07 10:45:29 -05:00
|
|
|
* OpenOffice.org - a multi-platform office productivity suite
|
2003-10-15 08:44:37 -05:00
|
|
|
*
|
2005-09-07 10:45:29 -05:00
|
|
|
* $RCSfile: solver.cpp,v $
|
2003-10-15 08:44:37 -05:00
|
|
|
*
|
2005-09-07 10:45:29 -05:00
|
|
|
* $Revision: 1.3 $
|
2003-10-15 08:44:37 -05:00
|
|
|
*
|
2005-09-07 10:45:29 -05:00
|
|
|
* last change: $Author: rt $ $Date: 2005-09-07 16:45:29 $
|
2003-10-15 08:44:37 -05:00
|
|
|
*
|
2005-09-07 10:45:29 -05:00
|
|
|
* The Contents of this file are made available subject to
|
|
|
|
* the terms of GNU Lesser General Public License Version 2.1.
|
2003-10-15 08:44:37 -05:00
|
|
|
*
|
|
|
|
*
|
2005-09-07 10:45:29 -05:00
|
|
|
* GNU Lesser General Public License Version 2.1
|
|
|
|
* =============================================
|
|
|
|
* Copyright 2005 by Sun Microsystems, Inc.
|
|
|
|
* 901 San Antonio Road, Palo Alto, CA 94303, USA
|
2003-10-15 08:44:37 -05:00
|
|
|
*
|
2005-09-07 10:45:29 -05:00
|
|
|
* This library is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License version 2.1, as published by the Free Software Foundation.
|
2003-10-15 08:44:37 -05:00
|
|
|
*
|
2005-09-07 10:45:29 -05:00
|
|
|
* This library is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
2003-10-15 08:44:37 -05:00
|
|
|
*
|
2005-09-07 10:45:29 -05:00
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with this library; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
|
|
* MA 02111-1307 USA
|
2003-10-15 08:44:37 -05:00
|
|
|
*
|
|
|
|
************************************************************************/
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include "solver.h"
|
|
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
float** mgcLinearSystem::NewMatrix (int N)
|
|
|
|
{
|
|
|
|
float** A = new float*[N];
|
|
|
|
if ( !A )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
for (int row = 0; row < N; row++)
|
|
|
|
{
|
|
|
|
A[row] = new float[N];
|
|
|
|
if ( !A[row] )
|
|
|
|
{
|
|
|
|
for (int i = 0; i < row; i++)
|
|
|
|
delete[] A[i];
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
for (int col = 0; col < N; col++)
|
|
|
|
A[row][col] = 0;
|
|
|
|
}
|
|
|
|
return A;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
void mgcLinearSystem::DeleteMatrix (int N, float** A)
|
|
|
|
{
|
|
|
|
for (int row = 0; row < N; row++)
|
|
|
|
delete[] A[row];
|
|
|
|
delete[] A;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
float* mgcLinearSystem::NewVector (int N)
|
|
|
|
{
|
|
|
|
float* B = new float[N];
|
|
|
|
if ( !B )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
for (int row = 0; row < N; row++)
|
|
|
|
B[row] = 0;
|
|
|
|
return B;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
void mgcLinearSystem::DeleteVector (int , float* B)
|
|
|
|
{
|
|
|
|
delete[] B;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
int mgcLinearSystem::Inverse (int n, float** a)
|
|
|
|
{
|
|
|
|
int* indxc = new int[n];
|
|
|
|
int* indxr = new int[n];
|
|
|
|
int* ipiv = new int[n];
|
|
|
|
|
2004-09-08 10:17:41 -05:00
|
|
|
int i, j, k;
|
|
|
|
int irow = 0;
|
|
|
|
int icol = 0;
|
2003-10-15 08:44:37 -05:00
|
|
|
float big, pivinv, save;
|
|
|
|
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
ipiv[j] = 0;
|
|
|
|
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
big = 0;
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
{
|
|
|
|
if ( ipiv[j] != 1 )
|
|
|
|
{
|
|
|
|
for (k = 0; k < n; k++)
|
|
|
|
{
|
|
|
|
if ( ipiv[k] == 0 )
|
|
|
|
{
|
|
|
|
if ( fabs(a[j][k]) >= big )
|
|
|
|
{
|
|
|
|
big = (float)fabs(a[j][k]);
|
|
|
|
irow = j;
|
|
|
|
icol = k;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if ( ipiv[k] > 1 )
|
|
|
|
{
|
|
|
|
delete[] ipiv;
|
|
|
|
delete[] indxr;
|
|
|
|
delete[] indxc;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ipiv[icol]++;
|
|
|
|
|
|
|
|
if ( irow != icol )
|
|
|
|
{
|
|
|
|
float* rowptr = a[irow];
|
|
|
|
a[irow] = a[icol];
|
|
|
|
a[icol] = rowptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
indxr[i] = irow;
|
|
|
|
indxc[i] = icol;
|
|
|
|
if ( a[icol][icol] == 0 )
|
|
|
|
{
|
|
|
|
delete[] ipiv;
|
|
|
|
delete[] indxr;
|
|
|
|
delete[] indxc;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
pivinv = 1/a[icol][icol];
|
|
|
|
a[icol][icol] = 1;
|
|
|
|
for (k = 0; k < n; k++)
|
|
|
|
a[icol][k] *= pivinv;
|
|
|
|
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
{
|
|
|
|
if ( j != icol )
|
|
|
|
{
|
|
|
|
save = a[j][icol];
|
|
|
|
a[j][icol] = 0;
|
|
|
|
for (k = 0; k < n; k++)
|
|
|
|
a[j][k] -= a[icol][k]*save;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (j = n-1; j >= 0; j--)
|
|
|
|
{
|
|
|
|
if ( indxr[j] != indxc[j] )
|
|
|
|
{
|
|
|
|
for (k = 0; k < n; k++)
|
|
|
|
{
|
|
|
|
save = a[k][indxr[j]];
|
|
|
|
a[k][indxr[j]] = a[k][indxc[j]];
|
|
|
|
a[k][indxc[j]] = save;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
delete[] ipiv;
|
|
|
|
delete[] indxr;
|
|
|
|
delete[] indxc;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
int mgcLinearSystem::Solve (int n, float** a, float* b)
|
|
|
|
{
|
|
|
|
int* indxc = new int[n];
|
|
|
|
if ( !indxc )
|
|
|
|
return 0;
|
|
|
|
int* indxr = new int[n];
|
|
|
|
if ( !indxr )
|
|
|
|
{
|
|
|
|
delete[] indxc;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
int* ipiv = new int[n];
|
|
|
|
if ( !ipiv ) {
|
|
|
|
delete[] indxc;
|
|
|
|
delete[] indxr;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2004-09-08 10:17:41 -05:00
|
|
|
int i, j, k;
|
|
|
|
int irow = 0;
|
|
|
|
int icol = 0;
|
2003-10-15 08:44:37 -05:00
|
|
|
float big, pivinv, save;
|
|
|
|
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
ipiv[j] = 0;
|
|
|
|
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
big = 0;
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
{
|
|
|
|
if ( ipiv[j] != 1 )
|
|
|
|
{
|
|
|
|
for (k = 0; k < n; k++)
|
|
|
|
{
|
|
|
|
if ( ipiv[k] == 0 )
|
|
|
|
{
|
|
|
|
if ( (float)fabs(a[j][k]) >= big )
|
|
|
|
{
|
|
|
|
big = (float)fabs(a[j][k]);
|
|
|
|
irow = j;
|
|
|
|
icol = k;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if ( ipiv[k] > 1 )
|
|
|
|
{
|
|
|
|
delete[] ipiv;
|
|
|
|
delete[] indxr;
|
|
|
|
delete[] indxc;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ipiv[icol]++;
|
|
|
|
|
|
|
|
if ( irow != icol )
|
|
|
|
{
|
|
|
|
float* rowptr = a[irow];
|
|
|
|
a[irow] = a[icol];
|
|
|
|
a[icol] = rowptr;
|
|
|
|
|
|
|
|
save = b[irow];
|
|
|
|
b[irow] = b[icol];
|
|
|
|
b[icol] = save;
|
|
|
|
}
|
|
|
|
|
|
|
|
indxr[i] = irow;
|
|
|
|
indxc[i] = icol;
|
|
|
|
if ( a[icol][icol] == 0 )
|
|
|
|
{
|
|
|
|
delete[] ipiv;
|
|
|
|
delete[] indxr;
|
|
|
|
delete[] indxc;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
pivinv = 1/a[icol][icol];
|
|
|
|
a[icol][icol] = 1;
|
|
|
|
for (k = 0; k < n; k++)
|
|
|
|
a[icol][k] *= pivinv;
|
|
|
|
b[icol] *= pivinv;
|
|
|
|
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
{
|
|
|
|
if ( j != icol )
|
|
|
|
{
|
|
|
|
save = a[j][icol];
|
|
|
|
a[j][icol] = 0;
|
|
|
|
for (k = 0; k < n; k++)
|
|
|
|
a[j][k] -= a[icol][k]*save;
|
|
|
|
b[j] -= b[icol]*save;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (j = n-1; j >= 0; j--)
|
|
|
|
{
|
|
|
|
if ( indxr[j] != indxc[j] )
|
|
|
|
{
|
|
|
|
for (k = 0; k < n; k++)
|
|
|
|
{
|
|
|
|
save = a[k][indxr[j]];
|
|
|
|
a[k][indxr[j]] = a[k][indxc[j]];
|
|
|
|
a[k][indxc[j]] = save;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
delete[] ipiv;
|
|
|
|
delete[] indxr;
|
|
|
|
delete[] indxc;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
int mgcLinearSystem::SolveTri (int n, float* a, float* b, float* c,
|
|
|
|
float* r, float* u)
|
|
|
|
{
|
|
|
|
if ( b[0] == 0 )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
float* gam = new float[n-1];
|
|
|
|
if ( !gam )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
float bet = b[0];
|
|
|
|
u[0] = r[0]/bet;
|
|
|
|
int i, j;
|
|
|
|
for (i = 0, j = 1; j < n; i++, j++)
|
|
|
|
{
|
|
|
|
gam[i] = c[i]/bet;
|
|
|
|
bet = b[j]-a[i]*gam[i];
|
|
|
|
if ( bet == 0 )
|
|
|
|
{
|
|
|
|
delete[] gam;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
u[j] = (r[j]-a[i]*u[i])/bet;
|
|
|
|
}
|
|
|
|
for (i = n-1, j = n-2; j >= 0; i--, j--)
|
|
|
|
u[j] -= gam[j]*u[i];
|
|
|
|
|
|
|
|
delete[] gam;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
int mgcLinearSystem::SolveConstTri (int n, float a, float b, float c,
|
|
|
|
float* r, float* u)
|
|
|
|
{
|
|
|
|
if ( b == 0 )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
float* gam = new float[n-1];
|
|
|
|
if ( !gam )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
float bet = b;
|
|
|
|
u[0] = r[0]/bet;
|
|
|
|
int i, j;
|
|
|
|
for (i = 0, j = 1; j < n; i++, j++)
|
|
|
|
{
|
|
|
|
gam[i] = c/bet;
|
|
|
|
bet = b-a*gam[i];
|
|
|
|
if ( bet == 0 )
|
|
|
|
{
|
|
|
|
delete[] gam;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
u[j] = (r[j]-a*u[i])/bet;
|
|
|
|
}
|
|
|
|
for (i = n-1, j = n-2; j >= 0; i--, j--)
|
|
|
|
u[j] -= gam[j]*u[i];
|
|
|
|
|
|
|
|
delete[] gam;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
int mgcLinearSystem::SolveSymmetric (int n, float** A, float* b)
|
|
|
|
{
|
|
|
|
// A = L D L^t decomposition with diagonal terms of L equal to 1
|
|
|
|
// Algorithm stores D terms in A[i][i] and off-diagonal L terms in
|
|
|
|
// A[i][j] for i > j. (G. Golub and C. Van Loan, Matrix Computations)
|
|
|
|
|
|
|
|
const float tolerance = 1e-06f;
|
|
|
|
|
|
|
|
int i, j, k;
|
|
|
|
float* v = new float[n];
|
|
|
|
if ( !v )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
{
|
|
|
|
for (i = 0; i < j; i++)
|
|
|
|
v[i] = A[j][i]*A[i][i];
|
|
|
|
|
|
|
|
v[j] = A[j][j];
|
|
|
|
for (i = 0; i < j; i++)
|
|
|
|
v[j] -= A[j][i]*v[i];
|
|
|
|
|
|
|
|
A[j][j] = v[j];
|
|
|
|
if ( fabs(v[j]) <= tolerance )
|
|
|
|
{
|
|
|
|
delete[] v;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
for (i = j+1; i < n; i++)
|
|
|
|
{
|
|
|
|
for (k = 0; k < j; k++)
|
|
|
|
A[i][j] -= A[i][k]*v[k];
|
|
|
|
A[i][j] /= v[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
delete[] v;
|
|
|
|
|
|
|
|
// Solve Ax = b.
|
|
|
|
|
|
|
|
// Forward substitution: Let z = DL^t x, then Lz = b. Algorithm
|
|
|
|
// stores z terms in b vector.
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
for (j = 0; j < i; j++)
|
|
|
|
b[i] -= A[i][j]*b[j];
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// Diagonal division: Let y = L^t x, then Dy = z. Algorithm stores
|
|
|
|
// y terms in b vector.
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
if ( fabs(A[i][i]) <= tolerance )
|
|
|
|
return 0;
|
|
|
|
b[i] /= A[i][i];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Back substitution: Solve L^t x = y. Algorithm stores x terms in
|
|
|
|
// b vector.
|
|
|
|
for (i = n-2; i >= 0; i--)
|
|
|
|
{
|
|
|
|
for (j = i+1; j < n; j++)
|
|
|
|
b[i] -= A[j][i]*b[j];
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
int mgcLinearSystem::SymmetricInverse (int n, float** A, float** Ainv)
|
|
|
|
{
|
|
|
|
// Same algorithm as SolveSymmetric, but applied simultaneously to
|
|
|
|
// columns of identity matrix.
|
|
|
|
|
|
|
|
int i, j, k;
|
|
|
|
float* v = new float[n];
|
|
|
|
if ( !v )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
Ainv[i][j] = ( i != j ? 0.0f : 1.0f );
|
|
|
|
}
|
|
|
|
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
{
|
|
|
|
for (i = 0; i < j; i++)
|
|
|
|
v[i] = A[j][i]*A[i][i];
|
|
|
|
|
|
|
|
v[j] = A[j][j];
|
|
|
|
for (i = 0; i < j; i++)
|
|
|
|
v[j] -= A[j][i]*v[i];
|
|
|
|
|
|
|
|
A[j][j] = v[j];
|
|
|
|
for (i = j+1; i < n; i++)
|
|
|
|
{
|
|
|
|
for (k = 0; k < j; k++)
|
|
|
|
A[i][j] -= A[i][k]*v[k];
|
|
|
|
A[i][j] /= v[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
delete[] v;
|
|
|
|
|
|
|
|
for (int col = 0; col < n; col++)
|
|
|
|
{
|
|
|
|
// forward substitution
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
for (j = 0; j < i; j++)
|
|
|
|
Ainv[i][col] -= A[i][j]*Ainv[j][col];
|
|
|
|
}
|
|
|
|
|
|
|
|
// diagonal division
|
|
|
|
const float tolerance = 1e-06f;
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
if ( fabs(A[i][i]) <= tolerance )
|
|
|
|
return 0;
|
|
|
|
Ainv[i][col] /= A[i][i];
|
|
|
|
}
|
|
|
|
|
|
|
|
// back substitution
|
|
|
|
for (i = n-2; i >= 0; i--)
|
|
|
|
{
|
|
|
|
for (j = i+1; j < n; j++)
|
|
|
|
Ainv[i][col] -= A[j][i]*Ainv[j][col];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
double** mgcLinearSystemD::NewMatrix (int N)
|
|
|
|
{
|
|
|
|
double** A = new double*[N];
|
|
|
|
if ( !A )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
for (int row = 0; row < N; row++)
|
|
|
|
{
|
|
|
|
A[row] = new double[N];
|
|
|
|
if ( !A[row] )
|
|
|
|
{
|
|
|
|
for (int i = 0; i < row; i++)
|
|
|
|
delete[] A[i];
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
for (int col = 0; col < N; col++)
|
|
|
|
A[row][col] = 0;
|
|
|
|
}
|
|
|
|
return A;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
void mgcLinearSystemD::DeleteMatrix (int N, double** A)
|
|
|
|
{
|
|
|
|
for (int row = 0; row < N; row++)
|
|
|
|
delete[] A[row];
|
|
|
|
delete[] A;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
double* mgcLinearSystemD::NewVector (int N)
|
|
|
|
{
|
|
|
|
double* B = new double[N];
|
|
|
|
if ( !B )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
for (int row = 0; row < N; row++)
|
|
|
|
B[row] = 0;
|
|
|
|
return B;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
void mgcLinearSystemD::DeleteVector (int , double* B)
|
|
|
|
{
|
|
|
|
delete[] B;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
int mgcLinearSystemD::Inverse (int n, double** a)
|
|
|
|
{
|
|
|
|
int* indxc = new int[n];
|
|
|
|
int* indxr = new int[n];
|
|
|
|
int* ipiv = new int[n];
|
|
|
|
|
2004-09-08 10:17:41 -05:00
|
|
|
int i, j, k;
|
|
|
|
int irow = 0;
|
|
|
|
int icol = 0;
|
2003-10-15 08:44:37 -05:00
|
|
|
double big, pivinv, save;
|
|
|
|
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
ipiv[j] = 0;
|
|
|
|
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
big = 0;
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
{
|
|
|
|
if ( ipiv[j] != 1 )
|
|
|
|
{
|
|
|
|
for (k = 0; k < n; k++)
|
|
|
|
{
|
|
|
|
if ( ipiv[k] == 0 )
|
|
|
|
{
|
|
|
|
if ( fabs(a[j][k]) >= big )
|
|
|
|
{
|
|
|
|
big = fabs(a[j][k]);
|
|
|
|
irow = j;
|
|
|
|
icol = k;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if ( ipiv[k] > 1 )
|
|
|
|
{
|
|
|
|
delete[] ipiv;
|
|
|
|
delete[] indxr;
|
|
|
|
delete[] indxc;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ipiv[icol]++;
|
|
|
|
|
|
|
|
if ( irow != icol )
|
|
|
|
{
|
|
|
|
double* rowptr = a[irow];
|
|
|
|
a[irow] = a[icol];
|
|
|
|
a[icol] = rowptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
indxr[i] = irow;
|
|
|
|
indxc[i] = icol;
|
|
|
|
if ( a[icol][icol] == 0 )
|
|
|
|
{
|
|
|
|
delete[] ipiv;
|
|
|
|
delete[] indxr;
|
|
|
|
delete[] indxc;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
pivinv = 1/a[icol][icol];
|
|
|
|
a[icol][icol] = 1;
|
|
|
|
for (k = 0; k < n; k++)
|
|
|
|
a[icol][k] *= pivinv;
|
|
|
|
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
{
|
|
|
|
if ( j != icol )
|
|
|
|
{
|
|
|
|
save = a[j][icol];
|
|
|
|
a[j][icol] = 0;
|
|
|
|
for (k = 0; k < n; k++)
|
|
|
|
a[j][k] -= a[icol][k]*save;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (j = n-1; j >= 0; j--)
|
|
|
|
{
|
|
|
|
if ( indxr[j] != indxc[j] )
|
|
|
|
{
|
|
|
|
for (k = 0; k < n; k++)
|
|
|
|
{
|
|
|
|
save = a[k][indxr[j]];
|
|
|
|
a[k][indxr[j]] = a[k][indxc[j]];
|
|
|
|
a[k][indxc[j]] = save;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
delete[] ipiv;
|
|
|
|
delete[] indxr;
|
|
|
|
delete[] indxc;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
int mgcLinearSystemD::Solve (int n, double** a, double* b)
|
|
|
|
{
|
|
|
|
int* indxc = new int[n];
|
|
|
|
if ( !indxc )
|
|
|
|
return 0;
|
|
|
|
int* indxr = new int[n];
|
|
|
|
if ( !indxr ) {
|
|
|
|
delete[] indxc;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
int* ipiv = new int[n];
|
|
|
|
if ( !ipiv ) {
|
|
|
|
delete[] indxc;
|
|
|
|
delete[] indxr;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2004-09-08 10:17:41 -05:00
|
|
|
int i, j, k;
|
|
|
|
int irow = 0;
|
|
|
|
int icol = 0;
|
2003-10-15 08:44:37 -05:00
|
|
|
double big, pivinv, save;
|
|
|
|
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
ipiv[j] = 0;
|
|
|
|
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
big = 0;
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
{
|
|
|
|
if ( ipiv[j] != 1 )
|
|
|
|
{
|
|
|
|
for (k = 0; k < n; k++)
|
|
|
|
{
|
|
|
|
if ( ipiv[k] == 0 )
|
|
|
|
{
|
|
|
|
if ( fabs(a[j][k]) >= big )
|
|
|
|
{
|
|
|
|
big = fabs(a[j][k]);
|
|
|
|
irow = j;
|
|
|
|
icol = k;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if ( ipiv[k] > 1 )
|
|
|
|
{
|
|
|
|
delete[] ipiv;
|
|
|
|
delete[] indxr;
|
|
|
|
delete[] indxc;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ipiv[icol]++;
|
|
|
|
|
|
|
|
if ( irow != icol )
|
|
|
|
{
|
|
|
|
double* rowptr = a[irow];
|
|
|
|
a[irow] = a[icol];
|
|
|
|
a[icol] = rowptr;
|
|
|
|
|
|
|
|
save = b[irow];
|
|
|
|
b[irow] = b[icol];
|
|
|
|
b[icol] = save;
|
|
|
|
}
|
|
|
|
|
|
|
|
indxr[i] = irow;
|
|
|
|
indxc[i] = icol;
|
|
|
|
if ( a[icol][icol] == 0 )
|
|
|
|
{
|
|
|
|
delete[] ipiv;
|
|
|
|
delete[] indxr;
|
|
|
|
delete[] indxc;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
pivinv = 1/a[icol][icol];
|
|
|
|
a[icol][icol] = 1;
|
|
|
|
for (k = 0; k < n; k++)
|
|
|
|
a[icol][k] *= pivinv;
|
|
|
|
b[icol] *= pivinv;
|
|
|
|
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
{
|
|
|
|
if ( j != icol )
|
|
|
|
{
|
|
|
|
save = a[j][icol];
|
|
|
|
a[j][icol] = 0;
|
|
|
|
for (k = 0; k < n; k++)
|
|
|
|
a[j][k] -= a[icol][k]*save;
|
|
|
|
b[j] -= b[icol]*save;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (j = n-1; j >= 0; j--)
|
|
|
|
{
|
|
|
|
if ( indxr[j] != indxc[j] )
|
|
|
|
{
|
|
|
|
for (k = 0; k < n; k++)
|
|
|
|
{
|
|
|
|
save = a[k][indxr[j]];
|
|
|
|
a[k][indxr[j]] = a[k][indxc[j]];
|
|
|
|
a[k][indxc[j]] = save;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
delete[] ipiv;
|
|
|
|
delete[] indxr;
|
|
|
|
delete[] indxc;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
int mgcLinearSystemD::SolveTri (int n, double* a, double* b, double* c,
|
|
|
|
double* r, double* u)
|
|
|
|
{
|
|
|
|
if ( b[0] == 0 )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
double* gam = new double[n-1];
|
|
|
|
if ( !gam )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
double bet = b[0];
|
|
|
|
u[0] = r[0]/bet;
|
|
|
|
int i, j;
|
|
|
|
for (i = 0, j = 1; j < n; i++, j++)
|
|
|
|
{
|
|
|
|
gam[i] = c[i]/bet;
|
|
|
|
bet = b[j]-a[i]*gam[i];
|
|
|
|
if ( bet == 0 )
|
|
|
|
{
|
|
|
|
delete[] gam;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
u[j] = (r[j]-a[i]*u[i])/bet;
|
|
|
|
}
|
|
|
|
for (i = n-1, j = n-2; j >= 0; i--, j--)
|
|
|
|
u[j] -= gam[j]*u[i];
|
|
|
|
|
|
|
|
delete[] gam;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
int mgcLinearSystemD::SolveConstTri (int n, double a, double b, double c,
|
|
|
|
double* r, double* u)
|
|
|
|
{
|
|
|
|
if ( b == 0 )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
double* gam = new double[n-1];
|
|
|
|
if ( !gam )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
double bet = b;
|
|
|
|
u[0] = r[0]/bet;
|
|
|
|
int i, j;
|
|
|
|
for (i = 0, j = 1; j < n; i++, j++)
|
|
|
|
{
|
|
|
|
gam[i] = c/bet;
|
|
|
|
bet = b-a*gam[i];
|
|
|
|
if ( bet == 0 )
|
|
|
|
{
|
|
|
|
delete[] gam;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
u[j] = (r[j]-a*u[i])/bet;
|
|
|
|
}
|
|
|
|
for (i = n-1, j = n-2; j >= 0; i--, j--)
|
|
|
|
u[j] -= gam[j]*u[i];
|
|
|
|
|
|
|
|
delete[] gam;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
int mgcLinearSystemD::SolveSymmetric (int n, double** A, double* b)
|
|
|
|
{
|
|
|
|
// A = L D L^t decomposition with diagonal terms of L equal to 1
|
|
|
|
// Algorithm stores D terms in A[i][i] and off-diagonal L terms in
|
|
|
|
// A[i][j] for i > j. (G. Golub and C. Van Loan, Matrix Computations)
|
|
|
|
|
|
|
|
const double tolerance = 1e-06;
|
|
|
|
|
|
|
|
int i, j, k;
|
|
|
|
double* v = new double[n];
|
|
|
|
if ( !v )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
{
|
|
|
|
for (i = 0; i < j; i++)
|
|
|
|
v[i] = A[j][i]*A[i][i];
|
|
|
|
|
|
|
|
v[j] = A[j][j];
|
|
|
|
for (i = 0; i < j; i++)
|
|
|
|
v[j] -= A[j][i]*v[i];
|
|
|
|
|
|
|
|
A[j][j] = v[j];
|
|
|
|
if ( fabs(v[j]) <= tolerance )
|
|
|
|
{
|
|
|
|
delete[] v;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
for (i = j+1; i < n; i++)
|
|
|
|
{
|
|
|
|
for (k = 0; k < j; k++)
|
|
|
|
A[i][j] -= A[i][k]*v[k];
|
|
|
|
A[i][j] /= v[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
delete[] v;
|
|
|
|
|
|
|
|
// Solve Ax = b.
|
|
|
|
|
|
|
|
// Forward substitution: Let z = DL^t x, then Lz = b. Algorithm
|
|
|
|
// stores z terms in b vector.
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
for (j = 0; j < i; j++)
|
|
|
|
b[i] -= A[i][j]*b[j];
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// Diagonal division: Let y = L^t x, then Dy = z. Algorithm stores
|
|
|
|
// y terms in b vector.
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
if ( fabs(A[i][i]) <= tolerance )
|
|
|
|
return 0;
|
|
|
|
b[i] /= A[i][i];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Back substitution: Solve L^t x = y. Algorithm stores x terms in
|
|
|
|
// b vector.
|
|
|
|
for (i = n-2; i >= 0; i--)
|
|
|
|
{
|
|
|
|
for (j = i+1; j < n; j++)
|
|
|
|
b[i] -= A[j][i]*b[j];
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
int mgcLinearSystemD::SymmetricInverse (int n, double** A, double** Ainv)
|
|
|
|
{
|
|
|
|
// Same algorithm as SolveSymmetric, but applied simultaneously to
|
|
|
|
// columns of identity matrix.
|
|
|
|
|
|
|
|
int i, j, k;
|
|
|
|
double* v = new double[n];
|
|
|
|
if ( !v )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
Ainv[i][j] = ( i != j ? 0 : 1 );
|
|
|
|
}
|
|
|
|
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
{
|
|
|
|
for (i = 0; i < j; i++)
|
|
|
|
v[i] = A[j][i]*A[i][i];
|
|
|
|
|
|
|
|
v[j] = A[j][j];
|
|
|
|
for (i = 0; i < j; i++)
|
|
|
|
v[j] -= A[j][i]*v[i];
|
|
|
|
|
|
|
|
A[j][j] = v[j];
|
|
|
|
for (i = j+1; i < n; i++)
|
|
|
|
{
|
|
|
|
for (k = 0; k < j; k++)
|
|
|
|
A[i][j] -= A[i][k]*v[k];
|
|
|
|
A[i][j] /= v[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
delete[] v;
|
|
|
|
|
|
|
|
for (int col = 0; col < n; col++)
|
|
|
|
{
|
|
|
|
// forward substitution
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
for (j = 0; j < i; j++)
|
|
|
|
Ainv[i][col] -= A[i][j]*Ainv[j][col];
|
|
|
|
}
|
|
|
|
|
|
|
|
// diagonal division
|
|
|
|
const double tolerance = 1e-06;
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
if ( fabs(A[i][i]) <= tolerance )
|
|
|
|
return 0;
|
|
|
|
Ainv[i][col] /= A[i][i];
|
|
|
|
}
|
|
|
|
|
|
|
|
// back substitution
|
|
|
|
for (i = n-2; i >= 0; i--)
|
|
|
|
{
|
|
|
|
for (j = i+1; j < n; j++)
|
|
|
|
Ainv[i][col] -= A[j][i]*Ainv[j][col];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|